
 || Volume 7 || Issue 8 || October 2023 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 10

Malicious Pattern Detection from android API’s using

Machine Learning and Deep Learning

Tejal Sanjay Navarkar1, Prof. R. V. Patil2

Student, Department Computer Engineering, S.S.V.P.S.’s B.S. Deore College of Engineering, Dhule, India

 Professor, Department of Computer Engineering, S.S.V.P.S.’s B.S. Deore College Of Engineering, Dhule, India

Abstract: - Android application security is based on a consent

approach that limits access to important resources on an

Android device by third-party Android apps. Before

proceeding with the installation, the user must approve the

set of rights that the programmer needs. This process aims to

inform users of the risk of trying to install and using an

implementation on their device; however, even when the

permission system is well comprehended, users are often

unaware of the threat posed, and instead trust the app store

or the prominence of the app, and acknowledge the insertion

without questioning the developer's motivations. Machine

learning and Deep learning classifiers are increasingly being

used to categories malware based on permissions, either

separately or associatively. The goal of this research is to look

at strategies for characterization and detection of malware in

the literature based on the preceding elements. We do so by

illustrating and describing the limits of previous research as

well as potential future research topics.

Keywords: Android applications, malware detection,

permission-related APIs, random forests, software security

I INTRODUCTION

Permissions are the foundation of the Android security concept.

Permission is a security feature that restricts access to a portion

of the code or data on the device. The restriction is in place to

safeguard sensitive data and code from being abused to distort or

harm the user experience. Permissions are used to provide or

deny access to APIs and resources that are restricted. The

Android INTERNET permission, for example, is needed for

applications to execute network communications; hence, the

INTERNET permission restricts the establishing of a network

connection. In order to read entries in a user's phonebook, an

application must also have the READ CONTACTS permission.

It is the responsibility of the developer to determine the

permissions an application needs. Many users are unaware of

what each permission entails and approve them without thinking,

enabling the programme to access sensitive information about the

user. Another fault is that the user cannot choose which rights to

give and which to refuse. Numerous consumers will still approve

the installation of an app even if it requests a questionable

permission among many apparently valid ones. Android has

surpassed iOS as the most popular operating system for

smartphones and tablets, with an estimated market share of 70%

to 80%. With 1 billion Android devices expected to be shipped in

2017 and over 50 billion cumulative app downloads since the

first Android phone was introduced in 2008, cyber criminals

have naturally turned their attention to mobile platforms.

According to mobile security specialists, there was an

astonishing growth in Android malware from 2012 to 2013, with

the number of harmful applications found ranging from 120.000

to 718.000. Many efforts have gone into analysing the

characteristics of smartphone platforms and their apps in the last

decade in order to properly identify malware from official and

third-party sources. Bouncer, a Google tool, checks applications

for potentially harmful activity. Bouncer automatically tests

applications submitted to the Android Market by running them in

a virtual Android environment hosted on Google's cloud

infrastructure. Although the amount of malware downloads has

dropped after Bouncer was installed, this solution does not offer

protection against newer attack methods. The permission system

is used by the Android platform to limit application privileges in

order to protect users' sensitive data. To access the privacy-

relevant resources, an application must get a user's consent for

the needed rights. As a result, the permission system was created

to protect users from intrusive programmes, although its success

is greatly dependent on the user's understanding of permission

approval.

When an unfamiliar app is published, the system advises

checking the Play Store Marketplace to see whether it is

dangerous. For each new application or updated version of an

existing app, generate a risk score during runtime and categorise it

according to a predefined threshold. Implementing a malware

detection system in a real-time Android application environment

is a success.

 || Volume 7 || Issue 8 || October 2023 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 11

II LITERATURE REVIEW

Permissions necessary and requested are coupled with six

additional characteristics from the manifest and the disassembled

code in DREBIN [1]. Machine learning algorithms are used to

understand the difference between dangerous and benign

programmes automatically. Once trained offline on a dedicated

machine, the Support Vector Machine is just transmitted the

learnt model to the smartphone for identifying dangerous apps.

Huang et al. [2] investigate the feasibility of detecting fraudulent

Android apps using permissions and 20 features from app

bundles. According to their findings, a single classifier can

identify around 81 percent of fraudulent programmes. It may be a

fast filter to detect more suspect apps, according to them, by

integrating findings from several classifiers.

Liu and Liu [3] use requested and necessary permissions by an

application in a similar way. Machine learning algorithms and

permissions are employed in this system to categorise an app as

benign or harmful.

Sanz et al. [4] propose a novel approach for detecting fraudulent

Android apps using machine learning methods and examining the

application's extracted permissions. The existence of tags uses-

permission and uses-feature in the manifest, as well as the

amount of permissions granted to each application, are utilised to

categorise them.

According to [5] is a way for building Machine Learning

classifiers and detecting malware by extracting numerous

properties from the Android manifest. These features are the

specific permissions sought and the uses-feature>> tag.

Aung and Zaw [6] present a framework for developing a machine

learning-based malware detection system for Android in order to

identify malware apps and improve Smartphone users' security

and privacy. This system collects numerous permission-based

characteristics and events from Android apps and analyses them

using machine learning classifiers to determine if the app is

benign or malicious.

Shabtai et al. [7] divide Android apps into two categories:

utilities and games. Successful separation between games and

tools, in their opinion, should offer a good indicator of such

systems' capacity to learn and model Android benign

programmes and possibly identify malware files using Machine

Learning (ML) techniques on static attributes collected from

Android programme files.

The writers of these books limit their research to the most often

requested permissions (or a certain selection of permissions) [8].

However, depending on the assault, permissions like READ

LOGS might be just as dangerous as others (like INTERNET).

Every permit should be carefully assessed as having the potential

to be dangerous when paired with another. This method of

selection, according to [9], produces considerably skewed results.

Machine learning-based detection techniques are recognised to

have two drawbacks: they have a high rate of false alarms, and

choosing which characteristics should be learnt during the

training phase is a difficult task. The procedure of picking

datasets for training is therefore a crucial stage in these systems.

The performance of the classifier improves with time: for a

particular month Mi, whose apps were used for the training

datasets, the resultant classifier becomes less and less capable of

identifying all malware in subsequent months. Mk,k is greater

than i.

To represent the applications, the majority of these efforts extract

a feature set. The information conveyed by such characteristics

varies depending on the job. There is no evidence to prove which

attributes provide the greatest detection results, however each

research takes needed permissions into account. Moonsamy et al.

[10] are interested in using permissions as the sole feature to

characterise programmes and identifying certain permission

patterns to distinguish between clean and malicious apps.

Machine learning algorithms and permissions are used to identify

an application as dangerous or benign, however only the data

accessible to the user is examined before the programme is

downloaded; the source code of the programmes is not

considered. This implies that hidden flaws such as permission

escalation attacks and capability leaks (explained in detail in

[11]) cannot be identified.

III MOTIVATION

Many real-time APIs include harmful material as well as

unlawful device access, making it difficult to revoke such access

and recommending to the Play Store Marketplace if an unknown

programme is harmful or not. For each new application or

updated version of an existing app, generate a risk score during

runtime and categorise it according to a predefined threshold.

Implementing a malware detection system in a real-time Android

application environment is a success.

IV PROPOSED SYSTEM DESIGN

The malware detection techniques are proposed by the system.

We used I the permission ranking-based feature selection

technique (ii) the similarity-based permission feature selection

(iii) the association rule mining technique. The permission

ranking-based feature selection strategy and the permission

feature selection technique based on similarity rate the

characteristics based on frequency. The permissions are deleted

using the association rule mining technique, which is popular in

malware and benign applications. Furthermore, we increase the

deep learning algorithm's detection accuracy for permission-

induced malware. We develop an enhanced RNN technique that

 || Volume 7 || Issue 8 || October 2023 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 12

comprises fewer but more critical characteristics by comparing

essential and non-essential characteristics.

Figure 1: System Architecture

Problem Definition

In this research to design and implement real Android

applications throughout the globe may mine secret malware

patterns and extract extremely sensitive APIs that are extensively

utilised in Android malware. We also use MalPat, an automated

malware detection technology, to combat malware and help

Android app markets deal with unknown dangerous apps.

Objectives

• To design developed an system for detect the malicious

contents from third party API’s which is generally used

for android application development.

• To implement a machine learning or deep learning

algorithm to mine the API codes.

• To validate the entire API’s using background

Knowledge which works like supervised learning

approach.

Advantages

• Single Category features: The advantages of single

category features are easy to extract, and low power

computation. The limitations associated with this

method are code obstruction, imitation attack and low

precision.

• Multiple categories of Features: The advantages of

multiple category features are easy to extract, and high

accuracy.

• The main benefits of machine learning base analysis are

to perform the highest accuracy as compared to static

and dynamic analysis.

 Limitations

• Highest complexity;

• Framework requirement to combine the static and

dynamic features;

• More resource use; and

• Time-consumption.

 Applications

• Android Malware classification systems

• Android bug tracker for API’s and web services

• SecureRank Application for finding malicious API’s.

Algorithm

A recurrent neural network (RNN) is a structure or piece of

hardware that mimics the functions of every emotional brain.

Recurrent neurons or processing components make up an

artificial neural network. It is divided into three levels: input

layer, concealed layer (which may include several layers), and

output layer.

Figure 2: RNN Layers

Training Process

Input: Training dataset Train-Data [], Many activation functions

[], Threshold Th

Output: Extracted Features Feature set[] for a trained module

that has been finished.

Step 1: Set the data input block d[], the activation function, and

the epoch size.

 || Volume 7 || Issue 8 || October 2023 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 13

Step 2: Features-pkl  Feature-Extraction (d[])

Step 3: Feature-set []  optimized (Features-pkl)

Step 4: Return Feature-set []

Testing Process

Input: Extracted features of testing instances set Data [i.....n],

Train data policies PSet[41].....T[n]

Output: Normal or attack.

Steps:

1. For each (Data [i] into Data) choose n attributes from Data [i]

using below formula,

2. For each (PSet [i] from PSet),

3. Evaluate train and test instances using below formula,

 4. If (Treeset[k]: weight > Th),

Treeset[k].class  Train[m]: class

Break;

5. Return Treeset[k].class

V RESULT

The implementation process was completed in a Java open-

source setting. The device operates on the Java 3-tier analytics

platform with a distributed INTEL 3.0 GHz i5 CPU and 4 GB

RAM. Whether an email is spam or not has been determined uses

the APK dataset. We have performed experiment analysis on

ensemble machine implementation to verify the outcomes.

Figure 3: Accuracy of system analysis

Figure 6 shows the suggested system's classification accuracy

and a comparison to several state-of-the-art systems. The figure

above shows the detection accuracy of APK in malicious or not

detection using different machine learning and deep learning

classifications. The suggested classifier has been used to identify

APK in malicious or not, with a high accuracy rate of up to

95.40%.

To ensure higher accuracy, our model was trained using many

classifiers, which were then checked and compared. The user will

get each classifier's assessed results. The user may compare the

result with other results to determine if the data is APK in

malicious or not when all classifiers have returned their findings

to them. For easier comprehension, graphs and tables will be

used to display each classification result.

Table I. Comparison Table

Classifiers Accuracy Precision Recall F-score

SVM 80.50 100 89.50 85.40

NB 81.40 100 87.40 82.40

RNN 95.40 96.50 94.10 97.15

Figure 4: Comparison of Existing and Proposed System

algorithms

 || Volume 7 || Issue 8 || October 2023 || ISSN (Online) 2456-0774

 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH

AND ENGINEERING TRENDS

WWW.IJASRET.COM 14

VI CONCLUSION

The number of Android smartphones connecting to the Internet

has recently increased. For connectivity and data sharing, the

majority of these Android devices rely on Android Apps. The

Android platform's permissions system limited the apps' access.

Permission may be used as a feature in Android apps to

distinguish between good and bad apps. Our efforts, on the other

hand, lowered the number of permissions required to maintain

accuracy and efficiency. In this project, harmful and benign

Android applications are used in the real world to uncover hidden

malware patterns. Previous research has mostly focused on

permissions, sensitive resources, intents, and the like, with

relatively few attempts to solve the malware detection issue from

an API standpoint. To close this gap, we compare the behaviour

of malicious and benign applications when it comes to API use.

We can mine malware patterns and retrieve extremely sensitive

APIs by training the random forests classifier with fine-grained

features. We propose an automated malware detection method

using a machine learning and deep learning algorithm to help

Android app markets.

References

[1] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck,

and C. Siemens, “DREBIN: Effective ¨ and Explainable

Detection of Android Malware in Your Pocket,” 2014.

[2] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance

Evaluation on Permission-Based Detection for Android

Malware,” in Advances in Intelligent Systems and Applications-

Volume 2, pp. 111–120, Springer, 2013.

[3] X. Liu and J. Liu, “A Two-Layered Permission-Based

Android Malware Detection Scheme,” in Mobile Cloud

Computing, Services, and Engineering (MobileCloud), 2014 2nd

IEEE International Conference on, pp. 142–148, IEEE, 2014.

[4] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G.

Bringas, and G. Alvarez, “Puma: Permission ´ usage to detect

malware in android,” in International Joint Conference CISIS12-

ICEUTE´ 12-SOCO´

[5] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J. Nieves,

P. G. Bringas, and G. Alvarez Mara ´ n˜on, ´ “MAMA: Manifest

Analysis for Malware Detection in Android,” Cybernetics and

Systems, vol. 44, no. 6-7, pp. 469–488, 2013

[6] Z. Aung and W. Zaw, “Permission-based android malware

detection,” International Journal Of Scientific & Technology

Research, vol. 2, no. 3, 2013.

[7] A. Shabtai, Y. Fledel, and Y. Elovici, “Automated static code

analysis for classifying Android applications using machine

learning,” in Computational Intelligence and Security (CIS),

2010 International Conference on, pp. 329–333, IEEE, 2010.12

Special Sessions, pp. 289–298, Springer, 2013.

[8] R. Sato, D. Chiba, and S. Goto, “Detecting Android Malware

by Analyzing Manifest Files,” Proceedings of the Asia-Pacific

Advanced Network, vol. 36, pp. 23–31, 2013.

[9] K. Allix, T. F. D. A. Bissyande, J. Klein, and Y. Le Traon,

“Machine Learning-Based Malware Detection for Android

Applications: History Matters!,” 2014.

[10] V. Moonsamy, J. Rong, and S. Liu, “Mining permission

patterns for contrasting clean and malicious android

applications,” Future Generation Computer Systems, vol. 36, pp.

122–132, 2014.

