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Abstract: - Android application security is based on a consent 

approach that limits access to important resources on an 

Android device by third-party Android apps. Before 

proceeding with the installation, the user must approve the 

set of rights that the programmer needs. This process aims to 

inform users of the risk of trying to install and using an 

implementation on their device; however, even when the 

permission system is well comprehended, users are often 

unaware of the threat posed, and instead trust the app store 

or the prominence of the app, and acknowledge the insertion 

without questioning the developer's motivations. Machine 

learning and Deep learning classifiers are increasingly being 

used to categories malware based on permissions, either 

separately or associatively. The goal of this research is to look 

at strategies for characterization and detection of malware in 

the literature based on the preceding elements. We do so by 

illustrating and describing the limits of previous research as 

well as potential future research topics. 
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I INTRODUCTION 

Permissions are the foundation of the Android security concept. 

Permission is a security feature that restricts access to a portion 

of the code or data on the device. The restriction is in place to 

safeguard sensitive data and code from being abused to distort or 

harm the user experience. Permissions are used to provide or 

deny access to APIs and resources that are restricted. The 

Android INTERNET permission, for example, is needed for 

applications to execute network communications; hence, the 

INTERNET permission restricts the establishing of a network 

connection. In order to read entries in a user's phonebook, an 

application must also have the READ CONTACTS permission. 

It is the responsibility of the developer to determine the 

permissions an application needs. Many users are unaware of 

what each permission entails and approve them without thinking, 

enabling the programme to access sensitive information about the 

user. Another fault is that the user cannot choose which rights to 

give and which to refuse. Numerous consumers will still approve 

the installation of an app even if it requests a questionable 

permission among many apparently valid ones. Android has 

surpassed iOS as the most popular operating system for 

smartphones and tablets, with an estimated market share of 70% 

to 80%. With 1 billion Android devices expected to be shipped in 

2017 and over 50 billion cumulative app downloads since the 

first Android phone was introduced in 2008, cyber criminals 

have naturally turned their attention to mobile platforms. 

According to mobile security specialists, there was an 

astonishing growth in Android malware from 2012 to 2013, with 

the number of harmful applications found ranging from 120.000 

to 718.000. Many efforts have gone into analysing the 

characteristics of smartphone platforms and their apps in the last 

decade in order to properly identify malware from official and 

third-party sources. Bouncer, a Google tool, checks applications 

for potentially harmful activity. Bouncer automatically tests 

applications submitted to the Android Market by running them in 

a virtual Android environment hosted on Google's cloud 

infrastructure. Although the amount of malware downloads has 

dropped after Bouncer was installed, this solution does not offer 

protection against newer attack methods. The permission system 

is used by the Android platform to limit application privileges in 

order to protect users' sensitive data. To access the privacy-

relevant resources, an application must get a user's consent for 

the needed rights. As a result, the permission system was created 

to protect users from intrusive programmes, although its success 

is greatly dependent on the user's understanding of permission 

approval. 

When an unfamiliar app is published, the system advises 

checking the Play Store Marketplace to see whether it is 

dangerous. For each new application or updated version of an 

existing app, generate a risk score during runtime and categorise it 

according to a predefined threshold. Implementing a malware 

detection system in a real-time Android application environment 

is a success. 
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II LITERATURE REVIEW 

Permissions necessary and requested are coupled with six 

additional characteristics from the manifest and the disassembled 

code in DREBIN [1]. Machine learning algorithms are used to 

understand the difference between dangerous and benign 

programmes automatically. Once trained offline on a dedicated 

machine, the Support Vector Machine is just transmitted the 

learnt model to the smartphone for identifying dangerous apps. 

Huang et al. [2] investigate the feasibility of detecting fraudulent 

Android apps using permissions and 20 features from app 

bundles. According to their findings, a single classifier can 

identify around 81 percent of fraudulent programmes. It may be a 

fast filter to detect more suspect apps, according to them, by 

integrating findings from several classifiers. 

Liu and Liu [3] use requested and necessary permissions by an 

application in a similar way. Machine learning algorithms and 

permissions are employed in this system to categorise an app as 

benign or harmful. 

Sanz et al. [4] propose a novel approach for detecting fraudulent 

Android apps using machine learning methods and examining the 

application's extracted permissions. The existence of tags uses-

permission and uses-feature in the manifest, as well as the 

amount of permissions granted to each application, are utilised to 

categorise them. 

According to [5] is a way for building Machine Learning 

classifiers and detecting malware by extracting numerous 

properties from the Android manifest. These features are the 

specific permissions sought and the uses-feature>> tag. 

Aung and Zaw [6] present a framework for developing a machine 

learning-based malware detection system for Android in order to 

identify malware apps and improve Smartphone users' security 

and privacy. This system collects numerous permission-based 

characteristics and events from Android apps and analyses them 

using machine learning classifiers to determine if the app is 

benign or malicious. 

Shabtai et al. [7] divide Android apps into two categories: 

utilities and games. Successful separation between games and 

tools, in their opinion, should offer a good indicator of such 

systems' capacity to learn and model Android benign 

programmes and possibly identify malware files using Machine 

Learning (ML) techniques on static attributes collected from 

Android programme files. 

The writers of these books limit their research to the most often 

requested permissions (or a certain selection of permissions) [8]. 

However, depending on the assault, permissions like READ 

LOGS might be just as dangerous as others (like INTERNET). 

Every permit should be carefully assessed as having the potential 

to be dangerous when paired with another. This method of 

selection, according to [9], produces considerably skewed results. 

Machine learning-based detection techniques are recognised to 

have two drawbacks: they have a high rate of false alarms, and 

choosing which characteristics should be learnt during the 

training phase is a difficult task. The procedure of picking 

datasets for training is therefore a crucial stage in these systems. 

The performance of the classifier improves with time: for a 

particular month Mi, whose apps were used for the training 

datasets, the resultant classifier becomes less and less capable of 

identifying all malware in subsequent months. Mk,k is greater 

than i. 

To represent the applications, the majority of these efforts extract 

a feature set. The information conveyed by such characteristics 

varies depending on the job. There is no evidence to prove which 

attributes provide the greatest detection results, however each 

research takes needed permissions into account. Moonsamy et al. 

[10] are interested in using permissions as the sole feature to 

characterise programmes and identifying certain permission 

patterns to distinguish between clean and malicious apps. 

Machine learning algorithms and permissions are used to identify 

an application as dangerous or benign, however only the data 

accessible to the user is examined before the programme is 

downloaded; the source code of the programmes is not 

considered. This implies that hidden flaws such as permission 

escalation attacks and capability leaks (explained in detail in 

[11]) cannot be identified. 

III MOTIVATION 

Many real-time APIs include harmful material as well as 

unlawful device access, making it difficult to revoke such access 

and recommending to the Play Store Marketplace if an unknown 

programme is harmful or not. For each new application or 

updated version of an existing app, generate a risk score during 

runtime and categorise it according to a predefined threshold. 

Implementing a malware detection system in a real-time Android 

application environment is a success. 

IV PROPOSED SYSTEM DESIGN 

The malware detection techniques are proposed by the system. 

We used I the permission ranking-based feature selection 

technique (ii) the similarity-based permission feature selection 

(iii) the association rule mining technique. The permission 

ranking-based feature selection strategy and the permission 

feature selection technique based on similarity rate the 

characteristics based on frequency. The permissions are deleted 

using the association rule mining technique, which is popular in 

malware and benign applications. Furthermore, we increase the 

deep learning algorithm's detection accuracy for permission-

induced malware. We develop an enhanced RNN technique that 
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comprises fewer but more critical characteristics by comparing 

essential and non-essential characteristics. 

 

Figure 1: System Architecture 

Problem Definition 

In this research to design and implement real Android 

applications throughout the globe may mine secret malware 

patterns and extract extremely sensitive APIs that are extensively 

utilised in Android malware. We also use MalPat, an automated 

malware detection technology, to combat malware and help 

Android app markets deal with unknown dangerous apps. 

 

Objectives 

• To design developed an system for detect the malicious 

contents from third party API’s which is generally used 

for android application development. 

• To implement a machine learning or deep learning 

algorithm to mine the API codes. 

• To validate the entire API’s using background 

Knowledge which works like supervised learning 

approach. 

Advantages 

•  Single Category features: The advantages of single 

category features are easy to extract, and low power 

computation. The limitations associated with this 

method are code obstruction, imitation attack and low 

precision. 

• Multiple categories of Features: The advantages of 

multiple category features are easy to extract, and high 

accuracy. 

• The main benefits of machine learning base analysis are 

to perform the highest accuracy as compared to static 

and dynamic analysis. 

 Limitations 

• Highest complexity;  

• Framework requirement to combine the static and 

dynamic features;  

• More resource use; and  

• Time-consumption. 

 Applications 

• Android Malware classification systems 

• Android bug tracker for API’s and web services 

• SecureRank Application for finding malicious API’s. 

Algorithm 

A recurrent neural network (RNN) is a structure or piece of 

hardware that mimics the functions of every emotional brain. 

Recurrent neurons or processing components make up an 

artificial neural network. It is divided into three levels: input 

layer, concealed layer (which may include several layers), and 

output layer. 

 

Figure 2: RNN Layers 

Training Process 

Input: Training dataset Train-Data [], Many activation functions 

[], Threshold Th 

Output: Extracted Features Feature set[] for a trained module 

that has been finished. 

Step 1: Set the data input block d[], the activation function, and 

the epoch size. 



                                                       || Volume 7 || Issue 8 || October 2023 || ISSN (Online) 2456-0774           

                     INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH 

AND ENGINEERING TRENDS                  

WWW.IJASRET.COM                                                                        13 
 

Step 2: Features-pkl  Feature-Extraction (d[]) 

Step 3: Feature-set []  optimized (Features-pkl) 

Step 4: Return Feature-set [] 

Testing Process 

Input: Extracted features of testing instances set Data [i.....n], 

Train data policies PSet[41].....T[n] 

Output: Normal or attack. 

Steps: 

1. For each (Data [i] into Data) choose n attributes from Data [i] 

using below formula, 

 

2. For each (PSet [i] from PSet), 

 

3. Evaluate train and test instances using below formula, 

 

 4. If (Treeset[k]: weight > Th), 

Treeset[k].class  Train[m]: class 

Break; 

5. Return Treeset[k].class 

V RESULT 

The implementation process was completed in a Java open-

source setting. The device operates on the Java 3-tier analytics 

platform with a distributed INTEL 3.0 GHz i5 CPU and 4 GB 

RAM. Whether an email is spam or not has been determined uses 

the APK dataset. We have performed experiment analysis on 

ensemble machine implementation to verify the outcomes. 

 

Figure 3: Accuracy of system analysis 

Figure 6 shows the suggested system's classification accuracy 

and a comparison to several state-of-the-art systems. The figure 

above shows the detection accuracy of APK in malicious or not 

detection using different machine learning and deep learning 

classifications. The suggested classifier has been used to identify 

APK in malicious or not, with a high accuracy rate of up to 

95.40%. 

To ensure higher accuracy, our model was trained using many 

classifiers, which were then checked and compared. The user will 

get each classifier's assessed results. The user may compare the 

result with other results to determine if the data is APK in 

malicious or not when all classifiers have returned their findings 

to them. For easier comprehension, graphs and tables will be 

used to display each classification result. 

Table I. Comparison Table 

Classifiers Accuracy Precision Recall F-score 

SVM 80.50 100 89.50 85.40 

NB 81.40 100 87.40 82.40 

RNN 95.40 96.50 94.10 97.15 

 

Figure 4: Comparison of Existing and Proposed System 

algorithms 
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VI CONCLUSION 

The number of Android smartphones connecting to the Internet 

has recently increased. For connectivity and data sharing, the 

majority of these Android devices rely on Android Apps. The 

Android platform's permissions system limited the apps' access. 

Permission may be used as a feature in Android apps to 

distinguish between good and bad apps. Our efforts, on the other 

hand, lowered the number of permissions required to maintain 

accuracy and efficiency. In this project, harmful and benign 

Android applications are used in the real world to uncover hidden 

malware patterns. Previous research has mostly focused on 

permissions, sensitive resources, intents, and the like, with 

relatively few attempts to solve the malware detection issue from 

an API standpoint. To close this gap, we compare the behaviour 

of malicious and benign applications when it comes to API use. 

We can mine malware patterns and retrieve extremely sensitive 

APIs by training the random forests classifier with fine-grained 

features. We propose an automated malware detection method 

using a machine learning and deep learning algorithm to help 

Android app markets.  
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