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Abstract – Geo-distributed clouds provide an intriguing 

platform to deploy online social network (OSN) services. 

To leverage the potential of clouds, a major concern of 

OSN providers is optimizing the monetary cost spent in 

using cloud resources while considering other important 

requirements, including providing satisfactory quality of 

service (QoS) and data availability to OSN users. In this 

paper, we study the problem of cost optimization for the 

dynamic OSN on multiple geo-distributed clouds over 

consecutive time periods while meeting predefined QoS 

and data availability requirements. We model the cost, the 

QoS, as well as the data availability of the OSN, formulate 

the problem, and design an algorithm named. We carry 

out extensive experiments with a large-scale real-world 

Twitter trace over 10 geo-distributed clouds all across the 

US. Our results show that, while always ensuring the QoS 

and the data availability as required, can reduce much 

more one-time cost than the state-of-the-art methods, and 

it can also significantly reduce the accumulative cost when 

continuously evaluated over 48 months, with OSN 

dynamics comparable to real-world cases. 

Keywords – Cloud computing, online social network, 

optimization models and methods, performance analysis and 

evaluation. 

I INTRODUCTION 

Internet services today are experiencing two 

remarkable changes. One is the unprecedented popularity of 

online social networks (OSNs), where users build social 

relationships and create and share contents with one another. 

The other is the rise of clouds. Often spanning multiple 

geographic locations, clouds provide an important platform for 

deploying distributed online services. Interestingly, these two 

changes tend to be combined. While OSN services often have 

a very large user base and need to scale to meet demands of 

users worldwide, geo distributed clouds that provide 

Infrastructure-as-a-Service can match this need seamlessly and 

provide tremendous resource and cost efficiency advantages. 

Infinite on-demand cloud resources can accommodate the 

surges of user requests; flexible pay-as-you-go charging 

schemes can save the investments of service providers; and 

cloud infrastructures also free service providers from building 

and operating one's own data centres. Indeed, a number of 

OSN services are increasingly deployed on clouds, e.g., 

Sonico, CozyCot, and Lifeplat [2]. Migrating OSN services 

toward geographically distributed clouds must reconcile the 

needs from several different aspects. 

First, OSN providers want to optimize the monetary 

cost spent in using cloud resources. For instance, they may 

wish to minimize the storage cost when replicating users' data 

at more than one cloud, or minimize the intercloud 

communication cost when users at one cloud have to request 

the data of others that are hosted at a different cloud. 

Moreover, OSN providers hope to provide OSN users with 

satisfactory quality of service (QoS). To this end, they may 

want a user's data and those of her friends to be accessible 

from the cloud closest to the user, for example. Last but not 

least, OSN providers may also be concerned with data 

availability, e.g., ensuring the number of users' data replicas to 

be no less than a specified threshold across clouds. 

 Addressing all such needs of cost, QoS, and data 

availability is further complicated by the fact that an OSN 

continuously experiences dynamics, e.g., new users join, old 

users leave, and the social relations also vary. Existing work 

on OSN service provisioning either pursues least cost in a 

single site without the QoS concern as in the geo-distribution 

case  or aims for least inter-data-centre traffic in the case of 

multiple data centres without considering other dimensions of 

the service [20], e.g., data availability. More importantly, the 

models in all such work do not capture the monetary cost of 

resource usage and thus cannot fit the cloud scenario. There 

are some works on cloud-based social video, focusing on 

leveraging online social relationships to improve video 

distribution, which is only one of the many facets of OSN 

services; most optimization research on multicloud and multi-

data-centre services is not for OSN [8][18]. They fail to 

capture the OSN features such as social relationships and user 

interactions, and thus their models are not applicable to OSN 

services. In this paper, we study the problem of optimizing the 

monetary cost of the dynamic, multicloud-based OSN while 

ensuring its QoS and data availability. 

II MODELS 

Targeting the OSN service over multiple clouds, we 

begin with identifying the types of costs related to cloud 

resource utilization: the storage cost for storing users' data, the 
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intercloud traffic cost for synchronizing data replicas across 

clouds, the redistribution cost incurred by the cost optimization 

mechanism itself, and some underlying maintenance cost for 

accommodating OSN dynamics. We discuss and approximate 

the total cost of the multicloud OSN over time. Afterwards, we 

propose a vector model to capture the QoS of the OSN service, 

show the features of this model, and demonstrate its usage. 

Finally, we model the OSN data availability by linking it with 

the number of each user's data replicas. 

A. System Settings 

Clouds and OSN users are all geographically 

distributed. Without loss of generality, we consider the single-

master–multi-slave paradigm [10] Each user has only one 

master replica and several slave replicas of her data, where 

each replica is hosted at a different cloud. When signing in to 

the OSN service, a user always connects to her master cloud, 

i.e., the cloud that hosts her master replica, and every read or 

writes operation conducted by a user goes to her master cloud 

first. We assume the placement of OSN users' replicas follows 

the social locality scheme . Observing that most activities of an 

OSN user happen between the user and her neighbors (e.g., 

friends on Facebook or followees on Twitter), this scheme 

requires that a user's master cloud host a replica (either the 

master or a slave) of every neighbor of the user. This way, 

every user can read the data of her friends and her own from a 

single cloud, and the intercloud traffic only involves the write 

traffic for maintaining the consistency among a user's replicas 

at different clouds.  

Social locality has multifold advantages: Given that 

there are often many more reads than writes in an OSN service 

[12], it can thus save a large proportion of the intercloud 

traffic; this scheme also incurs a much lower storage 

consumption than full replication in that the full replication 

requires every cloud to maintain a data replica for every user. 

Note that for a user with one master and slaves, a write on this 

user's data always incurs corresponding intercloud writes to 

maintain consistency. We consider eventual consistency in our 

work and assume issues such as write conflicts are tackled by 

existing techniques. 

B. Modeling the Storage and the Intercloud Traffic Cost 

OSN is commonly abstracted as a social graph, where 

each vertex represents a user and each edge represents a social 

relation between two users [21]. We extend this model by 

associating three distinct quantities with every user. 

1) A user has a storage cost, which is the monetary cost for 

storing one replica of her data (e.g., profile, statuses) in the 

cloud for one billing period. 

2) Similarly, a user has a traffic cost, which is the monetary 

cost during a billing period because of the intercloud traffic. 

As mentioned earlier, due to social locality, in our settings the 

intercloud traffic only involves writes (e.g., posting tweets, 

leaving comments). We do not consider intracloud traffic, no 

matter read or write, as it is free of charge [1], [3]. 

3) A user has a sorted list of clouds for the purpose of QoS. 

C. Modeling the Redistribution Cost 

An important part of our cost model is the cost 

incurred by the optimization mechanism itself, which we call 

the redistribution cost. We generally envisage that an 

optimization mechanism is devised to optimize the cost by 

moving data across clouds to optimum locations, thus 

incurring such cost. The redistribution cost is essentially the 

intercloud traffic cost, but in this paper we use the term 

intercloud traffic to specifically refer to the intercloud write 

traffic for maintaining replica consistency, and treat the 

redistribution cost separately. We expect that the optimization 

is executed at a per-billing period granularity (e.g., per-month) 

for the following reasons. 

First, this frequency is consistent with the usual 

charging unit for a continuously running and long-term online 

service. The OSN provider should be enabled to decide 

whether to optimize the cost for each billing period, according 

to her monetary budget and expected profit, etc. Also, applying 

any cost optimization mechanism too frequently may fail the 

optimization itself. At the time of writing this paper, the real-

world price of intercloud traffic for transferring some data 

once is quite similar to that of storing the same amount of data 

for an entire billing period [1][3]. As a result, moving data too 

frequently can incur more redistribution cost that can hardly be 

compensated by the saved storage and intercloud traffic cost. 

Without loss of generality, we assume that the optimization 

mechanism is applied only once at the beginning of each 

billing period, i.e., the redistribution cost only occurs at the 

beginning of every billing period. 

III ALGORITHM 

Our cost optimization problem is an integer 

programming (IP) problem. The huge user population of real-

world OSN services translates into a huge number of decision 

variables, and the NP-hardness of our problem makes it 

impossible to be efficiently solved by existing general-purpose 

IP solvers. We thus seek practical heuristics. We propose, an 

optimization algorithm that iteratively swaps the roles of 

master and slave replicas on different clouds to reach the 

optimal placement. 

A. Observations 

Our algorithm is inspired by the following three 

observations when swapping a master replica and a slave 

replica of a user. In what we call a role-swap process, the 

master replica becomes a slave replica and the slave becomes 

the master.  

B. Our Algorithm: Cosplay 

Inspired by the above three observations, we employ 

a series of role-swaps to maximize the total cost reduction 

while maintaining data availability and ensuring QoS 

requirements. Our algorithm follows a greedy approach in 

using role-swaps and requiring that every applied role-swap 
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reduce cost. The more cost reduction each role-swap has and 

the more role-swaps are applied, the more total cost reduction 

we can achieve. Note that our algorithm computes a better 

placement, and it does not physically manipulate data. When 

our algorithm terminates, data are role-swapped or moved (in 

the case of redistribution) from existing locations to new 

locations in order to implement the new placement output by 

our algorithm. 

 

IV EVALUATIONS 

We carry out extensive evaluations by placing real-

world Twitter data over 10 clouds all across the US. We 

demonstrate significant one-time and accumulated cost 

reductions with compared to existing approaches, while always 

ensuring QoS and data availability requirements. By varying 

the experimental settings, we also investigate the complex 

tradeoff among cost, QoS, and data availability. 

A. Data Preparation 

By crawling Twitter, we acquired a social graph of 

321 505 users with 3 437 409 social relations, all within the 

US. For each user, we also have her geographic location and 

tweets. We select 10 cities as cloud locations: Seattle (WA), 

Palo Alto (CA), Orem (UT), Chicago (IL), San Antonio (TX), 

Lansing (MI), Alexandria (LA), Atlanta (GA), Ashburn (VA), 

and New York (NY). We sort the clouds for each user based 

on geographic distance. We extract 48 monthly OSN snapshots 

from our Twitter data, from March 2006 to February 2010. 

Fig. 1 shows the monthly growth rates of the 48 graphs. Based 

on real-world cloud prices, we calculate the storage cost and 

the traffic cost of each user in each month. We use 

Exponentially Weighted Moving Average to do the cost 

estimation at the beginning of each month. 

 
Figure 1 Monthly growth rate 

B. Experimental Settings 

We run two groups of evaluations. In the first group, 

with our largest February 2010 social graph as input, we 

compare the costs and the QoS' of the data placements 

produced by the greedy method, the random method, SPAR, 

METIS, and cosplay. We also investigate how the costs are 

influenced by the data availability requirement and by the QoS 

requirement. We ensure social locality for all approaches for 

fair comparison.  

The greedy method places every user's master on her 

first most preferred cloud. The random method assigns a user's 

master to a cloud randomly. For SPAR, we implement it 

ourselves, and we treat each social relation between two users 

as an edge creation event and create a random permutation of 

all events to produce the edge creation trace as input, 

following the method suggested in. For METIS, there is an 

open-source implementation from its authors. We use its 

option of minimizing the interpretation communication. We 

use each user's storage cost plus her traffic cost as the vertex 

size (in METIS' terminology) to create its input. For, cosplay 

we use the greedy method to produce an existing placement. 

We vary the number of most preferred clouds that users use to 

place masters, and we also vary the QoS and the data 

availability requirements. We have 10 clouds sorted for every 

user. Besides the 10-clouds case, we also compare the cases 

when each user uses her 2, 4, 6, and 8 most preferred clouds 

for master placement. We vary the data availability 
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requirement by iterating  R from 0 to 9. We set , 

reflecting the fact that the cost of moving some data across 

clouds once is similar to that of storing the same data in the 

cloud for one month. 

In the second group of evaluations, with the inputs of 

our 48 monthly OSN snapshots with real-world costs and the 

other 48 monthly snapshots with estimated costs, we focus on 

the continuous cost reduction that can be achieved by cosplay, 

compared to the greedy method. For each month, we run 

greedy on the former, representing the real-world common 

practice of placing user's data on the closest cloud for lowest 

access latency. We run cosplay on the former to show the 

“ideal” cost reduction, assuming we know the exact costs of 

each user for each month at the beginning of every month. We 

also run cosplay on the latter, where replica locations are 

adjusted according to the estimated costs of each user, to show 

the effectiveness of our estimation approach. Note that cosplay 

runs only once at the beginning of every month. When new 

users join the system during a month, each user is still placed 

by the greedy method. When only using greedy, the total cost 

for each month is the sum of the storage and the intercloud 

traffic cost, plus the maintenance cost 

 
Figure 2 Cost comparison (I) 

 
Figure 3 Cost comparison (II) 

C. Evaluation Results 

In the figures, the cost of every placement is 

normalized as the quotient of the placement divided by the 

standard cost, where the standard cost is the cost of the greedy 

placement with R=0 The storage cost is normalized by the 

standard storage cost, the intercloud traffic cost and the 

redistribution cost are normalized by the standard intercloud 

traffic cost, and the total cost is normalized by the standard 

total cost. 

1) One-Time Cost Reduction: The greedy placement has 

moderate cost compared to random. Users who are 

geographically close to one another tend to have similar sorted 

lists of clouds. Thus, greedy can assign local users to the same 

nearby cloud, and random tends to straddle local social 

relations across clouds. SPAR has less cost than greedy and 

random but more than METIS, indicating that minimizing the 

number of replicas cannot necessarily minimize the actual 

cost. Outperforms all others with total cost reductions of 59%, 

66%, 50%, and 44%, compared to greedy, random, SPAR, and 

METIS, respectively.  

V RELATED WORK 

We contrast our work in this paper with existing work 

in the following three categories. 

Optimizing OSN Services: 

For OSN at a single site, using distributed hash to 

partition the data across servers [5][19] potentially leads to 

poor performance. Recent work proposes maintaining social 

locality to address this issue: SPAR minimizes the total 

number of slave replicas while maintaining social locality for 

every user; S-CLONE maximizes the number of users whose 

social locality can be maintained, given a fixed number of 

replicas per user. For OSN across multiple sites, some propose 

selective replication of data across data centers to reduce the 

total inter-data-center traffic [20], and others propose a 

framework that captures and optimizes multiple dimensions of 

the OSN system objectives simultaneously [15]. 

The work in and does not have the concern of QoS as 

in our geo-distribution case. Besides, the cost models in all the 

aforementioned existing work, except [15], do not capture the 

monetary expense and cannot fit the cloud scenario, while [15] 

and [20] do not explore social locality to optimize the multi-

data-center OSN service. 

Graph (Re) Partitioning: 

The graph partitioning problem divides a weighted 

graph into a given number of partitions in order to minimize 

either the weights of edges that straddle partitions or the 

interpretation communication volume while balancing the 

weights of vertices in each partition [7]. The repartitioning 

problem additionally considers the existing partitioning, 

minimizing the migration costs while balancing vertex 

weights. State-of-the-art solutions for such problems include 

METIS [17] and Scotch. Although similar in the sense of 

partitioning, the problem studied in this paper has fundamental 

difference from the classic graph (re)partitioning problems. 

First, classic problems have no notion of social locality, QoS, 
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and data availability, which makes these algorithms 

inapplicable to geo-distributed OSNs. Second, classic 

problems generally define a balance constraint, which is not 

necessary in the multicloud scenario because each cloud is 

supposed to provide “infinite” resources on demand. 

Optimizing Multicloud Services: 

The work most related to OSN services may be those 

on social media that leverage online social relationships to 

improve media delivery. Volley [8] finds out the best data 

center for each data item based on access interdependencies, 

the identity, and timestamp of data access, while balancing 

storage capacity across data centers; PNUTS [16] proposes 

selective replication at a per record granularity to minimize 

replication overhead and forwarding bandwidth while 

respecting policy constraints. A substantial body of literature 

studies cloud resource pricing  and allocation [18], request 

mapping, and content routing  in the multicloud or multi-data-

center scenario. Although our work also focuses on multicloud 

services, OSN is unique in data access patterns (i.e., social 

locality), making this group of existing work inapplicable to 

our scenario. 

VI CONCLUSION 

In this paper, we study the problem of optimizing the 

monetary cost spent on cloud resources when deploying an 

online social network service over multiple geo-distributed 

clouds. We model the cost of OSN data placement, quantify 

the OSN quality of service with our vector approach, and 

address OSN data availability by ensuring a minimum number 

of replicas for each user. Based on these models, we present 

the optimization problem of minimizing the total cost while 

ensuring the QoS and the data availability. We propose as our 

algorithm. By extensive evaluations with large-scale Twitter 

data, is verified to incur substantial cost reductions over 

existing, state-of-the-art approaches. It is also characterized by 

significant one-time and accumulated cost reductions over 48 

months such that the QoS and the data availability always 

meets predefined requirements. 
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