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Abstract: : Redundant Binary Partial Product Generator technique are used to reduce by one row the 

maximum height of the partial product array generated by a radix16 Modified Booth Encoded multiplier, 

without any raise in the delay of the partial product creation Block. In this paper, we describe an 

optimization for binary radix-4 modified Booth recoded multipliers to reduce the maximum height of the 

partial product columns to [n/4] for n = 64-bit unsigned operands. This is in contrast to the conventional 

maximum height of [(n + 1)/4]. Therefore, a reduction of one unit in the maximum height is achieved. This 

Arithmetic multipliers increase the performance of ALU and Processors . We evaluate the proposed 

approach by comparison with Normal Booth Multiplier. Logic synthesis showed its efficiency in terms of 

area, delay and power. Simulation results show that the proposed Multiplier based designs significantly 

improve the area, delay and power consumption when the word length of each operand in the multiplier is 

64 & n-bits. The proposed architecture of this paper analysis the delay and area using Xilinx 14.2. 
Keywords: Modified Booth Encoding, Radix-16, Pipeline, Multiplier, Enhanced, Carry Select Adder, Binary 

Excess Converter. 

pplication. ------------------------------------------------------   -------------------------------------------------

I INTRODUCTION 

Multiplier is one of the basic hardware block used for 

many digital and high performance systems such as FIR 

filters, digital signal processors and microprocessors 

etc. Many high speed low power multiplication 

algorithms and architectures have been proposed. 

Advances in technology have permitted many 

researchers to design multipliers which offer both high-

speed and regularity of layout, thereby making them 

suitable for VLSI implementation. Digital signal 

processing requires efficient multiplication operations 

with the highest possible speed without compromising 

the power budget. In general, basic multiplication 

algorithm can be divided into three following steps.1) 

partial product (pp) generation, 2) partial product 

reduction and 3) final carry propagated addition [1-2]. 

In the first step, a set of partial product rows is 

generated where each one is the result of the product of 

one bit of the multiplier by multiplicand. For example, 

if we consider the multiplication X x Y with both X and 

Y on n bits and of the form xn_1 . . . x0 and yn_1 . . . 

y0, then the ith row is, in general, a proper left shifting 

of yi x X, i.e., either a string of all zeros when yi = 0, or 

the multiplicand X itself when yi = 1. In this case, the 

number of PP rows generated during the first phase is 

clearly n [1-4]. Recoding of binary numbers was first 

hinted at by Booth [5] four decades ago. MacSorley [6] 

proposed a modification of Booth’s algorithm a decade 

after. Modified booth encoding (MBE) [6] is a 

technique that has been introduced to reduce the no of 

pp rows with a maximum height of [n/2] +1 rows. More 

specifically, Two’s complement multiplier [7] using 

radix-4 MBE generates a pp array with a maximum 

height of [n/2] rows without any increase of delay, each 

row of the pp array follows the one of the following 

possible values: all zeros, +X, +2X [8].This pp 

reduction may increases the speed of the multiplier. 

During pp reduction phase, all pp rows are reduced by 

using compression tree [9-10].Since the intermediate 

addition values is not important, the outcome of this 

phase is a result represented in redundant carry save 

form, i.e., as two rows, which allows for much faster 

implementations. The final (carry-propagated) addition 

has the task of adding these two rows and of presenting 

the final result in a non-redundant form, i.e., as a single 

row. In this work, we introduce an idea to reduce the pp 

array with a maximum height of [n/3] rows by using 

radix-8 booth recoding process. A similar study aimed 
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at the reduction of the maximum height to [n/3] but 

using a different approach has recently presented 

interesting results in [11]. Thus, in the following, we 

will evaluate and compare the proposed approach with 

the technique in [7]. 

II LITERATURE SURVEY 

The conventional modified Booth encoding (MBE) 

generates an irregular partial product array because of 

the extra partial product bit at the least significant bit 

position of each partial product row. In this brief, a 

simple approach is proposed to generate a regular 

partial product array with fewer partial product rows 

and negligible overhead, thereby lowering the 

complexity of partial product reduction and reducing 

the area, delay, and power of MBE multipliers. The 

proposed approach can also be utilized to regularize the 

partial product array of post truncated MBE multipliers. 

Implementation results demonstrate that the proposed 

MBE multipliers with a regular partial product array 

really achieve significant improvement in area, delay, 

and power consumption when compared with 

conventional MBE multipliers. Complex arithmetic 

operations are widely used in Digital Signal Processing 

(DSP) applications. In this work, we focus on 

optimizing the design of the fused Add-Multiply 

(FAM) operator for increasing performance. We 

investigate techniques to implement the direct recoding 

of the sum of two numbers in its Modified Booth (MB) 

form. We introduce a structured and efficient recoding 

technique and explore three different schemes by 

incorporating them in FAM designs. Comparing them 

with the FAM designs which use existing recoding 

schemes, the proposed technique yields considerable 

reductions in terms of critical delay, hardware 

complexity and power consumption of the FAM unit. 

III EXISTING METHOD 

The Booth algorithm has been used to improve the sign 

correction issues of signed number multiplication; 

however, the original Booth algorithm does not reduce 

the number of PPs. A Modified Booth Encoding (MBE) 

method (also known as the radix-4 Booth algorithm) 

has been further proposed. It reduces the number of PP 

rows by half. The complexity of the parallel multiplier 

is reduced significantly by applying MBE. The power 

consumption and the delay of the entire multiplier are 

also reduced. Let A = aN−1aN−2 · · · a2a1a0 be the 

multiplicand and B = bN−1bN−2 · · · b2b1b0 be the 

multiplier. The multiplier bits are encoded; so they are 

grouped in sets of three adjacent bits. The two side bits 

overlap with neighboring groups, except the first 

multiplier bit group. As per the encoded results from A, 

the Booth decoders select -2A, - A, 0, A, or 2A to 

generate the PP rows. 2A is obtained by a simple 1-bit 

left shift of the multiplicand. The negation operation is 

achieved by inverting each bit of A and adding 1 at its 

least significant bit (LSB) position. This is referred to 

as the correction term in this work. Therefore, the PP of 

each line can be easily generated by either shifting or 

inverting the multiplicand bits. The circuit diagram of 

the MBE scheme is shown in Fig. 2. Table 1 shows the 

K-Map of a conventional MBE. Therefore, the output 

of the Booth encoder ppij is given as follows:  

ppij =(b2i ⊕ b2i−1)(b2i+1 ⊕ aj ) + (b2i ⊕ b2i−1) 

(b2i+1 ⊕ b2i)(b2i+1 ⊕ aj−1) (1) 

The correction term for the negation operation is as 

follows:  

Ei = b2i+1b2i + b2i+1b2i−1 (2) 

As per Eq. (2), the correction term (i.e., Ei) of the 

negation operation is almost equal to the MSB of the 

multiplier except when b2i+1b2ib2i−1 = 111. Ei can be 

further simplified by reconsidering this entry in the 

MBE truth table. In [36], it is observed that all the 

entries in the 6th column of Table 1 can be changed to 1 

to achieve a simplified E0 i along with a slight increase 

in complexity of a pp0 ij as follows: 

pp0 ij =(b2i ⊕ b2i−1)(b2i+1 ⊕ aj ) + (b2i ⊕ b2i−1) 

(b2i+1 ⊕ b2i)(b2i+1 ⊕ aj−1) + b2i+1b2ib2i−1 (3) 

 

Fig. 1. Overall structure of an 8-bit RB multiplier 



                                                                 || Volume 5 || Issue 8 || August 2020 || ISSN (Online) 2456-0774 

                            INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH  

                                                                        AND ENGINEERING TRENDS 

WWW.IJASRET.COM                                                         3 
 

 
 

 

Fig. 2. MBE scheme: encoder and decoder  

IV PROPOSED METHOD 

The K-map of the radix-4 approximate modified Booth 

encoder (R4AMBE6), i.e., appij6−1, with 6 errors in 

the Kmap is shown in Table 1, where 0 denotes an entry 

in which a ’1’ is replaced by a ’0’ and 1 denotes a ’0’ 

entry that has been replaced by a ’1’. Only 6 entries are 

modified to simplify the Booth encoding. This 

approximate design relies on the property that the truth 

table is as symmetrical as possible for a design with the 

least complexity. Therefore, three modifications change 

a ’1’ to a ’0’ and three modifications change a ’0’ to a 

’1’ in the K-map. The output of R4AMBE6 is given as 

follows:  

appij6−1 = (b2i + b2i−1)(b2i+1 ⊕ ai) (17) Ei = 

(b2i+1b2i) + (b2i+1b2i−1) 

Compared with the exact MBE, R4AMBE6 can 

significantly reduce both the complexity and the critical 

path delay of Booth encoding. The error rate, denoted 

by Pbe, is given by: Pbe = 6/32 = 18.75% (19) The gate 

level structure of R4AMBE6 is shown in Fig. 5. The 

conventional design of MBE (Fig. 2) consists of four 

XNOR-2 gates, one XOR-2 gate, one OR-3 gate, one 

OR2 gate and one NAND-2 gate. The R4AMBE6 

design only requires one XOR-2 gate, one AND-2 gate 

and one OR-2 gate 

The approximate Radix-4 with the new modified Booth 

Encoding (R4ANMBE6), i.e., app 0 ij6−1 , with 6 

errors in the K-map is shown in Table 1. In this 

approximate design, there are more entries changed 

from ’0’ to ’1’ than those changed from ’1’ to ’0’. 

Therefore, the approximate results produced by 

R4ANMB6 will be usually larger than its exact 

counterpart. 

 

 

 

TABLE 1: K-Map of R4AMBE6 

 

 

Fig. 3. The gate-level circuit of the proposed 

R4AMBE6 

From Table 1, the approximate pp 0 ij is derived as 

follows:  

app 0 ij6−1 = b2i+1 ⊕ aj + b2ib2i−1 (20) E 0 i = b2i+1 

 This design further reduces the complexity of the 

correction term (i.e., Ei). Its error rate is the same as 

R4AMBE6: The gate level circuit of R4ANMBE6 is 

shown in Fig. 4. The R4AMBE6 design only requires 

one XOR-2 gate, one AND-2 gate and one OR-2 gate, 

which has the same complexity as R4AMBE6 

 

Fig. 4. The gate-level circuit of the proposed 

R4AMBE6 
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Fig. 5. The gate level circuit of ARBC-1 

 

Fig. 6. The gate level circuit of ARBC-2 

Efficient designs must ensure that the error between the 

approximate RB compressor and its exact counterpart 

remains as small as possible. The final results of 

compression are the same when (x − k ,x + k ) is equal 

to either (1, 0) or (0, 1). So, when the result of the 

approximate RB compressor is (x − k ,x + k ) = (1, 0) 

rather than the exact compression result (x − k ,x + k ) 

= (0, 1), the result is still correct. Therefore, the 

following four types of compression results are 

equivalent: (0, 0) = (0, 0), (0, 1) = (1, 0), (1, 0) = (0, 1) 

and (1, 1) = (1, 1).  

The Proposed accurate RB-NB Converter  

As the approximate Booth encoders and approximate 

RB compressors generate results that are generally 

larger than the exact results, the biased approximate 

results can be compensated using ARNC with smaller 

values. The principle of compensation is to use an 

approximate adder that produces results that are smaller 

than its exact results. Therefore, the complexity of the 

RB-NB converter can be reduced, while the overall 

accuracy of the approximate RB multipliers is also 

increased. The truth table of a possible approximate 

RB-NB converter is given by Table 6, a simple NOR 

gate is used in the approximate RB-NB digit converter 

as follows: S 0 k = S − k + S + k (29) In this section, 

the approximate RB multipliers are designed as follows. 

The proposed approximate Booth encoders, i.e., 

R4AMBE6 and R4ANMBE6, are used to generate 

approximate PPs. Approximate RB compressors, i.e., 

ARBC-1 and ARBC-2, are used for RB PP reduction, 

which can reduce the delay for compression and 

significantly improve speed performance when the 

operand size is a power of 2. The approximate RB-NB 

converter neither (made of NOR gates) is used to 

convert the RB digit to the NB digit. An approximation 

factor p (p=1, 2, ..., 2N) that has been proposed  is used. 

This is defined as the number of least significant PP 

columns that are generated by the approximate Booth 

encoders. 

TABLE 2: The Truth Table of RB-NB Conversion 

 

As p column PPs are already approximate, the 

approximate PPs can be accumulated with an 

approximate RB 4:2 compressor to further improve 

speed and reduce power consumption. For the same 

reason, the p least significant RB digits are also 

converted by the approximate RB-NB converter to 

calculate the final product. Four approximate RB 

multipliers are proposed. They use the exact regular PP 
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array when p ≤ (N − 4) (as detailed in [36]), and the 

approximate regular PP array when p > (N − 4) where 

the bit pairs (E2, 0) and (E3, 1) of Fig. 4 can be ignored 

in the approximate design of the RB Booth multipliers; 

however they all use the proposed approximate RB-NB 

converter. For the 2N-p most significant PP columns, 

the exact design is used for the final results. The four 

RB multipliers are different in the p PP columns as 

follows:  

1) The first approximate RB multiplier (R4ARBM1) 

uses R4AMBE6 to generate the p least significant PP 

columns and ARBC-1 to perform the approximate PP 

accumulation.  

2) The second approximate RB multiplier (R4ARBM2) 

uses R4AMBE6 to generate the p least significant PP 

columns and ARBC-2 for the corresponding 

approximate PP accumulation.  

3) The third approximate RB multiplier (R4ARBM3) 

uses R4ANMBE6 to generate the p least significant PP 

columns and ARBC-1 to perform the approximate PP 

accumulation.  

4) The fourth approximate RB multiplier (R4ARBM4) 

uses R4ANMBE6 to generate the p least significant PP 

columns and ARBC-2 to perform the approximate PP 

accumulation. As the error can be controlled by the 

approximation factor p, a reasonable accuracy can be 

achieved for different applications.  

 

Fig. 9. The dot diagram of the proposed 8-bit 

approximate RB multiplier 

Fig. 9 shows an approximate 8-bit RB multiplier with 

p=4 using an approximate Booth encoder, an 

approximate RB compressor, an approximate RB-NB 

converter, and an exact regular PP. A box with a solid 

line denotes the use of an exact RB compressor, and a 

box with a dotted line denotes an approximate RB 4:2 

compressor. The exact PP is represented by ● , the 

modified PP after logic simplification is represented by 

▼ , while the approximate PP term is represented by 

represents Ei . 

V SIMLUATION RESULTS 

The developed project is simulated and verified their 

functionality. Once the functional verification is done, 

the RTL model is taken to the synthesis process using 

the Xilinx ISE tool. In synthesis process, the RTL 

model will be converted to the gate level netlist mapped 

to a specific technology library. Here in this Spartan 3E 

family, many different devices were available in the 

Xilinx ISE tool. In order to synthesis this design the 

device named as “XC3S500E” has been chosen and the 

package as “FG320” with the device speed such as “-

5”. 

This design is synthesized and its results were analyzed 

as follows: 

 

Fig 7: SIMULATION RESULT 

 

Fig 8: PROPOSED DESIGN SUMMARY 
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Fig 9: PROPOSED TIMING REPORT 

 

Fig 10: POWER SUMMARY 

Table 3: COMPARISION TABLE 

 EXISTING PROPOSED 

LUTS 195 157 

TIME DELAY 25.418ns 7.334ns 

POWER 

CONSUMPTION 

0.114w 0.065w 

VI. CONCLUSION: 

The multiplier using the proposed algorithm achieves 

better power-delay products than those achieved by 

conventional Booth multipliers. Here, we have 

presented a method to reduce by one the maximum 

height of the partial product array for 64- bit,128-bit 

radix-4 Booth recoded magnitude multipliers. This 

reduction may allow more flexibility in the design of 

the reduction tree of the pipelined multiplier and 

achieved with no extra delay for n ≥ 32 for a cell-based 

design.. We believe that the proposed Booth algorithm 

can be broadly utilized in general processors as well as 

digital signal processors, mobile application processors, 

and various arithmetic units that use Booth encoding. 
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