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Abstract: In recent times, there has been a dramatic shift in the manufacturing techniques. The levels of 

automation and digital interfacing, particularly in machining, have increased to higher planes. Constantly 

growing demand and machining complexity has led to incorporation of a variety of methods to improve the 

machining accuracy and productivity. This paper investigates various conventional methods such as Taguchi 

method, RSM, linear programming, etc. and non-conventional methods like genetic algorithm, PSO, 

simulated annealing, etc. in the optimization of machining parameters and toolpath. The paper also 

highlights the advantages and drawbacks of different methods to set future scope of optimization in 

machining. 
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I INTRODUCTION 

In most manufacturing industries, task of 

programming a CNC machine is carried out through 

manual programming practices. In any such 

environment, selection of optimal machining data 

depends upon the person responsible for programming 

task, either programmer or operator. Skills and 

knowledge of programmer have a huge impact on 

firm‟sproductivity  which  many  researchers  have 

argued to be replaced by more reliable automatic 

programming approach. E. Poutsma suggested that 

product variety and batch size are driving factors for 

integrative and autonomous characterization of 

programming task[9]. 

In conventional systems, where part 

programmers are assigned CNC programming, the 

machining data is obtained through experience or 

handbooks (or a guess) which may be conservative 

and uneconomic leading to production limitations. K. 

Park and S. Kim [2] studied that the above selected 

machining data can prove to be incapable of 

eliminating inordinate amount of matching errors from 

tool failures such as tool deflection, wear, breakage, 

etc. Consequently, these conservative and non-optimal 

machining parameters results in low metalremoval 

-------------------------------------------------- 

 

rate. In such cases, optimal data is needed to be 

described to consider economic, technological and 

geometric limitations for recommended machining 

conditions [4]. 

The selection of optimal machining data and 

cutting conditions under the given machining situation 

was not an easy task and a topic for debate from 1980s 

to mid-1990s. S.H. Yeo et al. considered the decision 

ofmachiningparametersasa„knowledgebottleneck‟. It 

was primarily due to expanding range of 

manufacturing processes and materials, including 

rapidly diminishing number of skilled machinists[10]. 

They mentioned cutting tool selection, machine tool 

selection, cutting fluid selection, tool usage/cut 

selection, cutting speed/feed selection and checking 

against process constraints as a machining problem in 

a productionfloor. 

Furthermore, they developed an expert system 

named „computerized machinability data base systems 

(CMDBS) to automate the process of machining data 

selection. CMDBS was one of the early 

implementation of expert system/optimization 

technique in CNC machines with following aims 

[10]:- 

 Reduce productiondown-time. 
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 Production of more consistent and accurate 

parts. 

 Compensate for lack of skillshortage. 

 Capture and permanently retain knowledge 

within the organization. 

 Rationalizedexpertise. 

 Provide quick and easy update of new 

materials. 

After success of CMDBS, a number of 

attempts were made to optimize CNC machining, from 

offline adjustments to online adaptive controls which 

enabled the programmer to save more time spending 

on selecting optimal values. A process of optimization 

can be directed to obtain different objective functions 

such as minimum cost, maximum production, 

maximum, or a combination of these (multi-objective 

optimization). Such an optimization is governed by a 

number of factor which require more comprehensive 

algorithms[4]. 

II CLASSIFICATION OF OPTIMIZATION 

TECHNIQUES 

Over the time a number of optimization 

techniques have been implemented in CNC systems 

for optimization of machining process. Several 

researchers brought out the advantages and 

disadvantages of various techniques. They tested the 

potential of every technique in order to find their 

capabilities in solving a variety of problems related to 

machining. The successful implementation of 

optimization techniques offer a number of constraints 

for a particular machining environment, viz. data 

availability, design of models, boundary constraints, 

etc. It implies that the selection of an appropriate 

optimization technique depends upon type of problem 

to be solved, problem domain, and problem 

constraints. 

The process of optimization of a cutting 

process is carried out in two stages namely, modelling 

of parameters and determination of optimal or near- 

optimal conditions. In the first stage, a relationship is 

formed between various parameters involved in a 

machining process. These parameters can be input – 

output parameters on in-process parameters. Some 

important parameters in machining process are, cutting 

speed, feedrate and depth of cut [3], [6]. The 

relationship between these parameters was first 

depicted   by   Taylor‟stool   life   equation.   Some 

researchers have used the same equation in their works 

whereas someof them modified Taylor‟sequation 

according to their assumptions and objectives. Some 

important modelling techniques as described by I. 

Mukherjee and P.K. Ray are, Statistical regression 

technique, Artificial neural network and Fuzzy set- 

theory based modelling techniques[11]. 

In the second stage, optimization techniques 

are applied to obtain optimal or near-optimal 

machining data. To obtain the optimal data for a given 

machining environment with a particular objective 

function constrained to a number of input – output and 

in-process parameters is a significant and challenging 

task [11]. For solving such optimization problems 

numerous techniques has been developed which can be 

classified as Conventional and Non-conventional 

techniques. Conventional techniques are based on 

formulation of a mathematical model for the given 

machining conditions and environment. On the other 

side, non-conventional techniques do not rely on 

model formulation for theirfunction. 

III CONVENTIONAL TECHNIQUES 

The conventional techniques have been used 

for a long time in context of machining and computer 

numerical control. They can be implemented to a vast 

variety of problem domain and provide good results as 

compared to other techniques. The conventional 

techniques are deterministic approaches which doesn‟t 

predict the solutions but determine good solutions. 

These techniques are „model-based‟ which depend on 

modelling of a given system with given conditions and 

constraints. Suitable mathematical models, either 

mechanistic or empirical, are formed for a given 

machining condition and environment. Based on 

machining parameters such as cutting speed, feedrate 

and depth of cut, some models are generated which 

depict the relationship of these variables such as 

machining process models, cutting force models and 

tool wear models are common in literature [2].In 

machining and metal cutting, most of mathematical 

models  are  based  on  Taylor‟s  tool  life  equation  or 

some extended form of it. It provides a generic 

relationship between tool life and cutting speed as 

shown below: 
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where, V is the cutting speed (mm/min), T is tool life, 

n and C are Taylor‟s constant. The above equation in 

its general form is rarely used whereas extended 

Taylor‟s equation is used by a number of researchers 

and practitioners in their works, see [1], [6], [10], 

[12]–[15]. In the extended form, many factors are 

lumped together, such as workpiece hardness, rigidity 

of cutting system, chip thickness, and maximum or 

minimum allowable depth of cut. 

Conventional techniques can be further 

categorized as experimental techniques and 

mathematical iterative techniques [11]. Experimental 

techniques include statistical design of experiment 

such as Taguchi method and Response Surface Design 

Methodology (RSM). The iterative techniques include 

Linear Programming (LP), Non-linear Programming 

(NLP) and Dynamic Programming (DP).Design of 

experiments have been extensively used in CNC 

machines for a long time. Many researchers have 

implemented and solved optimization problems with 

Taguchi method and RSM. These two techniques are 

also used in collaboration to solve multi-objective 

optimization problems. Taguchi method find 

applications in turning process very often in literature. 

Process parameters of machining, particularly turning, 

such as surface finish, tool wear and material removal 

rate (MRR), are selected as objective functions. 

Taguchi and RSM are applied to obtain set of optimal 

parameters satisfying objective functions in turning 

[16]–[20]. These methods are also implemented in 

milling and drilling processes [21], [22]. On the other 

hand, mathematical iterative techniques find limited 

scope and applications in CNC machines. M. Mendes 

et al. implemented LP for determination of part mix, 

tool allocation and process plan selection in CNC 

machining centers [23]. Linear programming is also 

implemented for velocity planning under confined 

feedrate, acceleration and jerk [24]. A. Sonomez et al. 

optimized cutting parameters for multi-pass milling 

operations maximizing production rate [25]. In their 

work, dynamic programming was used to determine 

optimum number of passes while a non-linear 

programming approach was used to obtain values of 

optimum cutting conditions. Dynamic programming 

has also been used to calculate optimizedtool-paths 

in 5-axis flank milling operations with good results 

[26], [27]. 

D. Goldberg emphasized that the solutions 

obtained through conventional methods are generally 

local optimum solutions, i.e. the solution they seek are 

the best in a neighborhood of the current point [7]. S. 

Yeo et al. have also considered that a system or 

procedure based on these methods generally compute 

pseudo-optimum solutions [10]. Other disadvantages 

are discussed in more details in following sections. 

IV DRAWBACKS OFCONVENTIONAL 

TECHNIQUES 

To find an optimal solution to an objective 

function formulated from models and constraints by 

using a suitable optimization technique is a difficult 

task for researchers. Conventional methods provided a 

good alternative to such tasks with ease of 

implementation. These methods have been found to be 

efficient to solving multi-attribute decision making 

problems, viz. multi-objective and process 

optimization [28]. Taguchi and RSM methods have 

been very successful in designing high quality 

products and processes of many different fields. 

Though they have been implemented in CNC 

machining for optimization of machining processes 

[19]. 

I. Mukherjee and P.K. Ray pointed out some 

shortcomings of these methods in their work [11]. 

They suggested following postulates related to 

drawbacks of experimental technique. According to 

the study, Taguchi method fails to deal with many 

important interactions in system design due to a 

limited number of arrays. Also, it can lead to sub- 

optimal results when number of experiments are not 

adequate enough. On the other side, Response Surface 

Design Methodology (RSM) is not cost effective to be 

implemented by manufacturers. Moreover, it has been 

found difficult to solve highly non-linear, multi-model 

objective functions. The mathematical iterative 

techniques are unable to handle overall cutting process 

complexities but specific aspects of cutting such as 

cutting force, tool wear, and temperature. This is 

because of inability to covert overall conditions in 

their respective domain. They are also found to be 

costly and unreasonable to adopt and implement in 

manufacturingunits. 
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The limitation of conventional methods, as 

above mentioned, point that the methods are not 

robust. With increasing complexity of problems, a 

combination of these techniques would be needed to 

optimize the process. The reasons for this can be 

summarized as mentioned by R. Saravanan[6]: 

1. The convergence to an optimal solution 

depends on the chosen initialsolution. 

2. Most algorithms tend to become stuck on a 

suboptimal solution. 

3. An algorithm efficient in solving one 

machining optimization problem may not be 

efficient in solving a differentproblem. 

4. Computational difficulties in solving 

multivariable problems, typically more than 

four. 

5. Algorithms are not efficient in handling 

multiobjectivefunctions. 

To overcome the above-mentioned setbacks of 

conventional methods, non-conventional methods are 

implemented for optimization of machining process. 

V NON-CONVENTIONALTECHNIQUES 

The non-conventional techniques are used in 

problem domain when adequate solutions cannot be 

obtained through conventional techniques. 

Conventional techniques as discussed above possess 

several disadvantages which makes them difficult to 

implement in certain machining problems. These 

problems usually arise due to a large solution search 

space with large number of local optima. In such cases 

it becomes difficult to direct a conventional method of 

optimization towards finding a good or near-optimal 

solution. On the other hand, non-conventional 

techniques provide a good option to solve multi- 

objective problems with varying machining 

conditions, environment and multiple process 

variables. These techniques are generally studied in 

two different yet co-related forms, namely heuristics 

andmetaheuristics. 

A heuristic technique or simply a heuristic, is 

a search method of problem solving that employs a 

rational method of finding a solution generally local in 

scope. The strategies for such methods are generally 

derived from past experiences. Though the solutions 

obtained are not guaranteed to be optimal, but 

sufficientfortheimmediategoals.Heuristicsconsist 

of set of rules and readily accessible information to 

control problem solving in machines. Such methods 

can be used to speed up the process of optimization 

and obtaining a satisfactory as well as acceptable 

solution at a reasonable computational cost [11],[29]. 

On the other side, metaheuristics are special 

purpose heuristics designed for a particular problem 

domain. These methods are typically higher-level 

heuristics that may provide a sufficiently good solution 

to an optimization problem, especially with incomplete 

or imperfect information or limited computation 

capacity. In metaheuristics, a sample of set of 

solutions is generated which is too large to be 

completely sampled. Also, some assumptions may be 

made about the optimization problem being solved 

which enables them to be used for a variety of 

problems.As compared to conventional optimization 

techniques, metaheuristics do not guarantee a global 

optimal solution to be obtained on some class of 

problems [30]. Many metaheuristics implement some 

form of stochastic optimization [31], which means 

they work by using probabilistic methods to solve 

problems [32]. Sometimes, a problem itself may be 

stochastic as well. In combinatorial optimization, by 

searching over a large set of feasible solutions, they 

can often find good solutions with less computation 

efforts than conventional optimization methods such 

as experimental techniques, iterative techniques or 

simple heuristics[30]. 

There are a wide variety of metaheuristics 

which can be classified along a number of properties. 

One approach is to categorize the type of search 

strategies such as local search and global search [30]. 

A popular example of local search metaheuristic is 

Hill Climbing used to find local optima. Other 

methods such as Simulated Annealing, Tabu Search, 

Iterated Local Search, etc. are general referred as both 

local and global search metaheuristics.Another 

classification dimension is single solution and 

population-based searches [30], [33]. The single 

solution approaches focus on improving a single 

candidate solution, whereas population-based search 

approaches maintain and improve multiple candidate 

solutions. Population characteristics affects the 

solution search and often used to guide the search. 

Single solution approaches include Simulated 

Annealing, Iterated Local Search, andVariable 
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Neighborhood Search. Population-based approaches 

are Evolutionary Algorithms such as Genetic 

Algorithm, Genetic Programming, Evolutionary 

Programming, Differential Evolution and Evolution 

Strategy, Particle Swarm Optimization, Ant Colony 

Optimization, etc. [33]. 

A very active area of research is to design 

nature-inspired search and optimization metaheuristics 

which mimic the natural occurring phenomenon. Many 

recent metaheuristics, especially evolution- based 

algorithms are based on natural systems and 

principles. Other metaheuristics include Simulated 

Annealing, Evolutionary Algorithms, Ant Colony 

Optimization, Bee Colony Optimization and Particle 

Swarm Optimization. One practical issue in applying 

many natural computing algorithms, as mentionedby 

A. Brabazon et al., is the number of parameters which 

must be set in order to apply the algorithm to a 

particular problem [5].The optimization techniques 

mentioned hereof, have different advantages and 

disadvantages related to them. Although, there is a 

clearer distinction in their capabilities and 

characteristics. No single guideline or criterion exists 

in literature to choose the best optimization method for 

a particular problem space. Also, it is difficult to judge 

their performance any metal cutting process 

optimization problem. Hybrid methods and variants of 

existing methods possess different areas of application 

in CNC machining. Some methods are productive for 

parameters optimization in particular whereas some 

other methods are used in process planning and tool- 

path planning exercises. I. Mukherjee and P. Ray 

provided a list of typical applications and areas of 

different optimization methods, see[11]. 

VI GENETIC ALGORITHMS ANDCNC 

STANDPOINT 

Genetic algorithm is one of the most explored form of 

meta-heuristics and particularly evolutionary 

algorithms. It was introduced by John Holland and his 

colleagues in 1975. Genetic algorithms operate on a 

population of candidate solutions. Initial population is 

selected randomly consisting of a fixed number of 

individuals. Genetic operators such as crossover and 

mutation are applied to the individuals on a random 

probabilistic basis. Application of operators result in a 

new population of offspring from previous population. 

The fitness values of the offspring are calculated using 

a fitness function which serves as a performance 

measure of the individuals. The individuals with 

higher fitness score have higher chances of survival 

and mating through upcoming generations. In other 

words, highly fit individuals are assigned a higher 

probability of being selected for reproduction than 

others. The process continues for a particular number 

of generations. The average fitness of individuals is 

likely to increase with evolution as fitter individuals 

are more likely to be selected and less fit individuals 

are discarded. The process of evolutions continues and 

reproduction is repeated unless a termination criterion 

is reached. The termination criteria may be reached 

when a particular number of generations is achieved, 

or specific average/maximum fitness value is obtained 

or a mean deviation of fitness of individuals [34]. A 

typical pseudo-code of genetic algorithms is presented 

below in Figure 1. 

 

Figure 1. A typical genetic algorithm pseudo-code. [5] 

 
VII MERITS OF GENETICALGORITHMS 

Unlike other conventional methods, genetic 

algorithms require parameter set of an optimization 

problem to be coded as a string of finite length. 

Initially, binary encoding was initially used as primary 

encoding scheme [5]. Overtime, as this scheme proved 

to be a limiting factor, other schemes such as tree, 

value and permutation encoding were used [35]. 

Genetic algorithms, therefore, are largely 
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unconstrained by the limitations of other methods 

working directly with the parameter set. Also, GAs 

work with a rich database of points (solutions) 

simultaneously, climbing many peaks in parallel. In 

many of the conventional methods, a solution is 

determined from search space by moving from a single 

point to the next point. This involves using a set of 

transition rules (usually deterministic in nature) for 

determination of subsequent points and hence locates 

local peaks or optimum values in multimodal search 

spaces [7]. Whereas, the probability of finding a local 

peak in GAs is reduced with evolution. 

Genetic algorithms tend to be more canonical 

than many search and optimization techniques. This is 

primarily due to the fact that GAs do not require any 

auxiliary information relating to an optimization 

problem. Some optimization techniques require much 

auxiliary information such as derivatives and process 

parameters in order to work properly. In case of GAs, 

only require payoff values such as fitness score of an 

individual string. One of the major distinctions of GAs 

from conventional methods is that genetic algorithms 

use probabilistic transition rules to guide their search. 

This may prove to be a huge confinement, but D. 

Goldberg points out the method to be more of a simple 

random search[7]. 

VIII OPTIMIZATION OFCUTTING 

PARAMETERS 

Selection of parameters for enhanced surface 

finish, production rate, productivity and reduced 

machining time is desirable in every manufacturing 

industry. For this purpose, conventional methods such 

as design of experiments and iterative techniques have 

been applied with success. Most of the times such 

methods become imprecise to be implemented due to 

complexity of the machining problem. As discussed 

earlier, a machining optimization problem becomes 

complicated with intricate machining conditions 

involved. In such environment, it becomes obligatory 

to assign optimization problem to non-conventional 

techniques. Evolutionary algorithms and in particular, 

genetic algorithms have been successfully 

implemented in CNC machining for a longtime. 

Y. Tarng et al. purposed such an 

implementation of genetic algorithms in CNC turning 

machines [36]. They used GA for controlling the 

contour error and setting of optimal controller 

parameters. Contour error is the shortest distance 

between the desired and actual contours obtained by a 

control system in CNC. This execution is sometimes 

regarded as one of the earliest implementations of 

genetic algorithms in CNC machines. L. Lin and G. 

Lee proposed a hierarchical fuzzy control system for 

low speed control of C-axis in CNC turning centers 

[37]. An evolutionary learning technique based on 

genetic algorithms was used to search for the best 

hierarchical structure of the controller along with the 

parameters. Later that year, Y. Liu and C. Wang 

presented a modified genetic algorithm for parameter 

optimization in CNC milling [34]. Modified GA, in 

which operating domain of optimizing variables could 

be changed, was claimed to increase convergence 

speed. F. Cus and J. Balic proposed a genetic 

algorithm optimization approach for cutting process. 

They considered a number of cutting constraints 

affecting the economics of machining; such as tool-life 

constraint, cutting force constraint, power, stable 

cutting region, chip-tool interface temperature, surface 

finish, roughening and finishing constraints. 

Experiments showed that accuracy and precision of 

results was reliable and GA approach provided a 

sufficient approximation to the true optimal solution in 

comparison with other optimization techniques[13]. 

IX OPTIMIZATION OFTOOL-PATHS 

The distance travelled by a tool is a key 

component in machining to look upon. It contributes 

predominantly to machining time of any product. A 

vague toolpath in which tool has to travel distance 

more than required, claims increased machining time 

lowered productivity of a plant. Therefore, a particular 

attention is given to optimization of toolpaths in 

machining by a number of researchers. Optimization 

of a toolpath is directed to reduce the distance 

travelled by a tool to a cut a particular part or contour. 

Another parameter which is optimized is material 

removal rate. An optimal toolpath involving 

optimization of both these parameters increases the 

productivity of a plant, lowers machining time, and 

reduces tool travel thus toolwear. 
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In literature, optimum toolpath planning is 

traditionally regarded as a “travelling salesman 

problem” (TSP) [38]. Main objective of this problem 

lies is finding a suitable for tool such that required 

material is removed. But this classical problem have 

huge complexities associated with it. Also, TSP is 

found to have large search spaces which are very 

formed of productive and non-productive contours 

connected through nodes. One chromosome called 

master chromosome, used a real-number encoding 

scheme, represented the sequence of productive 

contours. Another chromosome called slave 

chromosome, used binary encoding scheme and 

represented the entry or exit node in the productive 
 

 
 

Figure 2. Comparison of initial and final non-productive paths [38]. 

 

difficult to solve. Researchers have tried a number of 

methods to solve TSP, such as nearest neighbor, 

cutting planes, branch and bound, to name a few [38]. 

Due to complexity of problem, a new strategy to 

obtain good results is using evolutionary approach. 

Mainly, genetic algorithms have been extensively used 

in literature to solve such toolpath optimization 

problems. 

One such strategy was presented by A. 

Krimpenis and G.C. Vosniakos. They proposed an 

optimization technique based on GA to optimize 

toolpaths for roughing operations on sculptured 

surfaces. Machining time was considered to be 

minimized for the goal of optimization [39]. They 

opted for a “machining cylinder slice” strategy for 

cutting hemispheres on 3-axis machining centers. 

Results obtained were optimum enough to find a good 

sequence of available tools and the scallop height 

distribution which produced minimum cutting time 

among the possible combinations. J.C Chen and T.X. 

Zhong proposed a hybrid genetic algorithm for the 

solution of such travelling salesman problem [38]. The 

so-called hybrid-coded genetic algorithm (HCGA) was 

used to optimize non-productive paths in CNC contour 

machining such as laser engraving and flame cutting. 

They represented the problem consisting of contours 

contours.Results showed effective performance of 

HCGA as compared to traditional GA. Initial non- 

productive paths were reduced from 24028.9 mm to 

5964.7 mm after evolution to 200 generations [38]. 

This is a huge reduction in toolpath length, about 

24.8%, and is evident from Figure 2. 

M. Kovacic and J. Balic, proposed a concept 

to automate a manufacturing process and hence find an 

optimal cuttingtoolpath (or „strategy‟, as used by 

authors) in laser cutting [8]. The objective of presented 

concept was to develop an intelligent manufacturing 

system capable of intelligent decision making and 

programming based on evolutionary approach. The 

comparison of results obtained by them with a random 

toolpath showed a reduction of 31.81% in tool travel. 

Also, the programming costs were reduced by nearly 

30% and production costs by 10%. Similar results 

were reported by B. Vaupotic, M. Kovacic et al 

[40].M. Lee and K. Kwon measured the performance 

of a proposed toolpath optimization based on genetic 

algorithms by relative effectiveness. The proposed 

method was similar to methods discussed above. 

Relative effectiveness was the percentage deviation 

from optimal values. Results showed 0.04%, 0.42% 

and 1.09% relative effectiveness in threedifferent 
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cases. It showed the high accuracy of such algorithms 

[41]. 

The above presented literature is mainly 

focused on non-conventional CNC cutting machines 

such as laser, plasma, flame and water-jet machining. 

But still, optimization of toolpaths in CNC turning and 

machining centers is less emphasized. These two 

machining systems contribute to a large part of 

manufacturing industries, so it is important to consider 

optimization of toolpaths in these machines. This, in 

turn, can considerably affect the overall production 

costs of a manufacturing plant as compared to above 

discussed non-conventional manufacturing systems. 

X TOOLPATH OPTIMIZATIONUSING 

DISCRETIZATIONFRAMEWORK 

M. Kovacic et al. proposed an evolutionary 

concept of CNC toolpath optimization and 

programming for both machining and turning 

operations. Their concept was based on discretization 

of machinable area. A machinable area is considered 

to comprise of tool motions, which are discretized into 

squares in case of turning and boxes in case ofmilling, 
 

 

Figure 3. Discretization of machinable area. [42] 

as shown inFigure 3. A tool, generally of one square 

thickness, can move in either direction and cut the 

material. Therefore, a toolpath can be considered as a 

sequence of squares. First, data input related to 

workpiece and product is processed, then machining 

area is divided into adequate number of squares. After 

discretization, definition of starting and final points of 

tool are given. In the end, an evolutionary approach 

based on genetic algorithms is applied to 

autonomously generate and optimize toolpaths 

(comprising of squares) through generations. 

Experimental results showed that conventional 

machining differed from genetic-assisted machining 

by 24.24% with respect to path length and for 85.71% 

with respect to tool wear. Another experiment 

suggested a 47.90% increase in productivity through 

path lengths as compared to conventional machining 

[42]. 

Discretization approach presented by M. 

Kovacic et al. is a fresh and innovative technique. This 

universal technique can yield valid results by reducing 

the complexity of toolpath generation and 

optimization. The size of search space is considerably 

reduced in this approach. The authors suggest that 

above technique is efficient and universal. Universality 

of the approach makes it usable for other NC machines 

also such as CMM, laser, plasma cutting machines, 

robots,etc. 

A similar approach to above presented work is 

proposed by J. Barclay, V. Dhokia and A. Nassehi. In 

their study [43], they used a simplified model to 

reduce the search space of optimization problem. They 

divided the workpiece into layers, and each layer was 

discretized into squares as shown in Figure 4. 

Furthermore, a cutting tool can be considered as 

occupying a certain square or a number of squares at 

any time. The initial priority of the approach was to 

find a valid tool-path (i.e. sequence of squares) to cut 

desired area, then it was shifted to optimize those 

solutions to make them more efficient using genetic 

approach.They concluded that above method was able 

to perform an active search and respond to changes in 

product shape with ease. The method wasalso 
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compared to a random search algorithm, and results 

showed that it found better solutions by chance. 

Resolution of a grid affects the approximation of a 

product shape. Increasing resolution of grid (i.e. small- 

sized squares) will result in better approximation of 

tool-paths but it would increase expense of 

complexity. 

In the same year, A. Nassehi, W. Essink and J. 

Barclay proposed a discretization framework for 

generation and optimization of milling tool-paths [44]. 

The framework was based on evolutionary approach 

that allows various properties to be optimized without 

changing the algorithm. In order to generate a 

discretized model, a grid of equidistant points was 

superimposed over the geometry of a part being 

machined. Similar to above presented works, a 

toolpath represents a set of all points visited on the 

grid. Procedure for the same is shown in Figure 5. 

After defining the boundary of a part, all the 

polylines and curves are offset by tool radius to 

determine the boundaries of desired tool-path. A grid 

is then superimposed on the part and all points falling 

outside the boundaries are deleted. If a tool is 

positioned at each individual point in a sequence 

without crossing the boundary, the part is machined 

and such a sequence of points contributes a feasible 

millingtool-path. 

Three objectives were selected to demonstrate 

the versatility of specified approach. These objectives 

were, minimization of cutting time, minimization of 

jerk and keeping constant cutter engagement. Results 

showed the effectiveness of proposed framework in 

optimizing these three objectives. The authors were 

able to generate different tool-paths for various 

objectives by only modifying the primary optimization 

objective. 

Using such discretization approaches, CNC 

machining tool-paths can be easily generated and 

optimized. Discretization of a problem provides 

structure to the solutions and allow the well- 

established computationally efficient optimization 

methods such as evolution-based techniques. 

 

 

 

Figure 5. Steps in discretization algorithm. [44] 

 
XI CONCLUSION 

In recent times, conventional techniques have been 

replaced by evolutionary approach for toolpath 

optimization. This is evident from literature that most 

emphasis is kept on using genetic algorithms for this. 

The paradigm shift occurred because of complexity of 

toolpath problem. The complicacies in finding an 

optimal toolpath makes conventional methods unable 

to handle such problems. On the other hand, genetic 

 

Figure 4. Discretization of a part into using square 

grid. [43] 
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algorithms can be easily implemented in a variety of 

problems. They are robust and efficient as compared to 

conventional methods. However, these are 

probabilistic approaches in which there are chances of 

non-optimal or pseudo-optimal solutions. 

An exclusive drawback of evolutionary 

approaches, more specifically genetic algorithms is the 

execution time. Convergence to an optimal solution 

can take significant time in comparison to other 

methods. Sometimes, premature convergence can 

affect the quality of results. For better results, it is 

always advisable to perform higher number of 

evaluations. In other words, evolution of individuals 

should continue for longer periods of time to get fitter 

individuals. This would increase the computational 

complexity and costs associated withcomputation. 

The criterion for a toolpath generation strategy 

that a toolpath must cover the entire machinable area 

without damaging any part of the finished surface. The 

material removal rate (MRR) should be maximized in 

respect of the surface quality and normal usage 

conditions of tool and machine (i.e. no breakage, no 

chatter, no overheating, etc.). A number of researchers 

have presented different algorithms and frameworks 

for toolpath generation based on above criterion, as 

discussed earlier. They have showed good results in 

obtaining cost and time effective toolpaths with less 

efforts. Automatic toolpath generation and 

programming can improve the productivity of a 

machining process by providing shorter programming 

time, optimum toolpaths, convenient cutting 

parameters, and error-free machining code. It can also 

relieve the part programmer of long and tedious part 

programmingefforts. 

The generation of an optimal toolpath is a less 

explored area of CNC machining. Optimization of 

toolpaths is most often overlooked while emphasizing 

other aspects such as machining parameters. After 

selection optimal set of parameters, the tests are 

conducted with part programs (toolpaths) generated by 

CAM software which are not optimized. If an optimal 

toolpath is used with optimal parameters, gains would 

be much higher. The discretization framework used by 

a few researchers has shown a lot of potential in 

solving sequencing problems. The framework is 

efficiently applied to the machining process for 

generating optimal toolpaths. The combination of 

discretization with genetic algorithms has opened up 

new possibilities of toolpath optimization. 
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