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Abstract: Pocket milling is one of the fundamental machining processes in the manufacturing industry. A 

number of researchers has presented methods and techniques for optimal milling of a pocket. Most of the 

methods are based on work area approximation schemes using discrete elements such as squares. This 

paper presents interpolation algorithms for modeling of work area of a pocket. For decreasing the discrete 

squares, reduction algorithms are also presented. The algorithms are implemented in an optimization 

problem of pocket milling toolpath. Results indicate that while interpolation algorithms effectively model 

the design element, reduction algorithms greatly decrease the search space of the optimization methods 

leading to a decrease in convergence time. 
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I INTRODUCTION 

In a typical machining process, a cutting tool 

is required to follow a sequence to machine given part. 

The part may consist of a number of design features 

such as pockets, contours, or holes[1]. A tool-path is 

generated which covers all these design features at 

least once. This generation of toolpath is accomplished 

either manually or using a CAM software such as 

MasterCAM, ESPIRIT, etc. In both the case, a set of 

points is marked onto the work piece which serve as 

an entry/exit for cutting tool. The design feature itself 

consist of a large number of points in general. This can 

be explained with the fact that when a CNC controller 

receives a command for linear interpolation through 

G01, a number of points between the end points are 

calculated and fed to the actuators in sequence. The 

drives of axes are actuated in pulses of motion. Tool 

seems to be moving in a straight line but at micro level 

it moves in a zig-zag motion since feed for x and y- 

axis are fed one by one insteps[2]. 

The accuracy of a toolpath depends largely on 

these interpolation points. Therefore, a large number 

of points are calculated to obtain a perfect straight-line 

motion. It implies that these interpolation points define 

a particular design feature and hence a part. For this, 

interpolation of such movements is performed in this 

researchalso[3].SimilartoaCNCcontroller,the 

-------------------------------------------------- 

number of points obtained here is also very large. A 

toolpath is considered as a sequence of these points. 

Such a large number of points makes it 

difficult to find an optimal sequence or a toolpath. 

This is because of possibilities of a vast search space. 

To explore such large spaces is a tough task for any 

optimization problem and is not feasible in most of the 

cases. Computational complexity increases while 

processing the points leading to higher costs and time 

disadvantages. Task can be simplified if the search 

space is reduced so as to make optimization techniques 

able to handleit[4]. 

The process of discretization provides a good 

method of approximation of a workpiece. Using a 

discretized set of points or squares, a part can be easily 

approximated. Hence a small number of points is 

necessary to find an optimal sequence rather than 

using a large set of points[5]. This reduces the search 

space for an optimization method along with a 

decrease in computational complexity. Due to these 

reasons a discretization framework is proposed in this 

research based on the concept of design elements and 

squares grid. Such discretization techniques are 

discussed by [6], [7] and[8]. 

A prepared drawing of part marks various 

dimensions and features of that part such as pockets, 

holes, fillets, contours, etc. These design features are 

needed to be formed on a workpiece through 
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machining. Efforts are made to ensure that proposed 

design features are cut with efficiency and quality. It is 

the assignment of a planner or programmer to 

efficiently machine those features onto the workpiece 

using adequate cutters[9]. A process plan is prepared 

for the same consisting of several cutter locations 

along with machining parameters associated with 

them. After selecting an appropriate cutter for current 

operation, cutter location data (CL data) is used to 

create toolpaths. It connects a number of cutter 

locations on workpiece in sequence which cutting tool 

has to follow to machine a particular design feature 

[10]. A number of optimal size cutters and relative 

toolpaths are needed for creation of an efficient 

process plan. Machining parameters, on one hand, 

influence the selection of cutters and toolpaths, but 

design features play a dominant role in efficient 

preparation of toolpaths and processplans[11]. 

S. Omirou points out that set of arbitrarily 

oriented primitive shapes such as rectangular blocks, 

circular cylinders, spheres, cones and tori is sufficient 

for modelling 90% of machined part [12]. Typical 

design features include rectangular pockets, circular 

pockets, holes, slots, fillets, chamfers, contours etc. 

These design features can be further segmented into 

design elements. The design elements are considered 

here as basic units which shape a design feature and 

hence a part. Typical elements include lines and arcs. 

A set of one or more design elements connected 

together constitute a design feature. For instance, a 3D 

part having 3 design features is shown in Figure1. 

The design elements of a part lead to 

separation of areas that are to be machined, known as 

 
 

 

Figure 2. 3D part having three design 

features. 

machinable area, from other areas of workpiece. 

Machinable area is the area of actual concern where a 

cutter is placed/moved to cut a design feature. 

Different parts of machinable area are visited by a 

cutter in sequence for successful machining of 

part/component. Therefore, a cutting strategy or 

toolpath can be defined as the sequence of cutter 

locations of an element inside machinable area. 

Usually, main objective of a typical toolpath 

optimization is to obtain such a cutting strategy or 

toolpath which allows complete cutting of all the 

elements in least amount of time. Furthermore, time 

taken to cut a part is characterized by the distance 

travelled by a cutting tool during machining. Short 

distances or tool travels lead to shorter time periods. It 

is thus obvious that distance travelled by a tool 

dependsuponthecutterlocationsorsimplypointson 

 

 

Figure 1. Discretization framework showing, a. Features of part, b. Approximation of given part by 

square grid. 
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workpiece visited by it. Figure 2b shows the 

discretized model of the 3D part shown in Figure 1. 

The design features are represented with the help of 

discrete squares. A toolpath is required to visit each 

discrete square to machine the givenpart. 

In this paper, algorithms are presented for 

implementation in discrete modelling of pocket milling 

work area. Section 2 discusses the interpolation algorithms 

for linear, circular and pocket elements. Section 3 presents 

reduction algorithms for linear, circular and rectangular 

pocket. In Section 4, tests are conducted to validate the 

performance of algorithms and results arepresented. 

II INTERPOLATION OF LINEAR, CIRCULAR AND 

POCKET ELEMENTS 

Theinterpolationalgorithmoran„interpolator‟isrespon

sible for calculation of data points for a design element. 

These calculations, in turn, are based on standard equations 

of geometric entities such as straight line, circle, etc. The 

main purpose of an interpolation algorithm is to calculate 

intermediate data points between points defined by user. 

This includes a number of calculations to obtain valid and 

correct interpolation data points. A simple and easy to 

implement method is to use standard equations of 

geometrical entities using which x and y-coordinate values 

of a number of data points at regular interval can be 

calculated. The so-obtained x-y values are used to activate 

corresponding elements ofworkMat. 

The interpolation algorithms are developed for 

each design element individually. Interpolator of linear 

elements is based on standard equation of straight line while 

the interpolator for circular elements is based on standard 

equation of a circle, discussed in further sections. Modeling 

of rectangular pockets is not based on this approach, rather a 

more direct technique is implemented. This approach 

provided a simple method of modeling rectangular pockets 

and avoid complex calculations. The data obtained from 

user for a particular design element is transferred to 

interpolator of that element. Generally, construction data 

such as end points, radius, length, width, etc. are required by 

an interpolator. It is programmed to obtain such data and 

calculate intermediate carry out furtherprocessing. 

2.1 LinearInterpolation 

The interpolation algorithm for a linear element is 

shown in Figure 4. It is based on standard equation of a 

straight line,  . This equation canbe modified 

as shown below, 

The above equation is used to calculate x and y coordinates 

of a linear element. By putting the value of x, corresponding 

value of y can be easily calculated, given the two end points 

(x1, y1) and (x2, y2). In this context, first slope of the line is 

calculated using below formula, 
 

 

Based on the value of slope, selection of the 

coordinate to be supplied to the equation of line is 

performer. Figure 3 shows slope values of a straight line. If 

the value of slope is greater than 1, values of x-coordinate 

are generated at regular interval within the range of [x1, x2]. 

Now, for each value of x-coordinate, a value of y-coordinate 

is calculated by putting the variables in the equation. And if 

the value of slope is less than one, y-coordinates are 

generated at regular intervals and corresponding values of x-

coordinate are calculated through the equation. The number 

of points generated between two end points of any line is 

thrice the distance between the twopoints. 

After all the data points have been calculated, x and y- 

coordinate values are stored in respective arrays and 

transferred for square activation. It has been discussed 

earlier that the x and y-coordinate values are rounded off to 

their nearest integer values. Then, squares present atthe 

 

Figure 3. Values of slope of a straight line. 

 
location  of  these  points  are  activated  by  assigning  

„1‟tocorresponding element of workMat. In this way, a 

linear element is added to the workpiece. All the data is 

stored in arrays and transferred to the decision maker (DM) 

and visualized on graphs. DM stores all points combined 

with their data in pData array. 
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Figure 4. Linear interpolator. 

 

2.2 CircularInterpolation 

The principle of a circular interpolator is similar to 

a linear interpolator. It is based on standard equation of 

circle, which is, 
 

 

This is the equation of a standard circle with radius 

„r‟and centreat origin.This equation is used to calculate x and 

y coordinate values of data points. The interpolation of a 

circular arc is processed in three steps (see Figure 7):- 

1. Generation of circle atorigin. 

2. Shift circle to actual centerpoint. 

3. Trim circle to create desiredarc. 

 

Figure 5. Full circle at origin. 

 

From user input, the values of end points, and 

radius are retrieved at the first step. Then a circle with same 

radius is generated at origin. This is accomplished by 

calculating the data points of the circle, i.e. (X0, Y0), using 

above equation. For this purpose, values of x-coordinate at 

regular interval are generated. To ensure smooth 

approximation of the circle, the distance between points is 

taken as 0.001 mm (1 micron). For these x-coordinates, 

value of y-coordinates is calculated. Values of only upper 

half of the circle are obtained in this way (Xupper, Yupper) 

as shown in Figure 5. Therefore, lower half of the circle 

(Xlower, Ylower) is obtained from upper circle. This can be 

done by reversing Xupper and taking negative of Yupper. 

The full circle of at origin would have coordinates X0 = 

[Xupper; Xlower], Y0 = [Yupper; Ylower]. 

Based on the end points and radius of the arc, the 
 

 
Figure 6. Mechanism of circular interpolator, a. Shift circles to actual centers, b. Select and trim circle to obtain 

arc. 
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Figure 7. Circular interpolator. 

 

center of arc is calculated in the next step. This can be done 

using above equation of circle. By putting the values two 

equations are obtained as: - 
 

 
 

 

These two equations can be solved for h and k after 

specifying the values of (a1, b1), (a2, b2) and r. The 

solution to the equations yields two center points, viz. (h1, 

k1) and (h2, k2). This implies the fact that there can be two 

circles of similar radius passing through any two given 

points. The full circle (X0, Y0) can now be shifted to these 

center points as shown in Figure 6(a) in red and blue. This is 

performed by adding value of h to each of the x-coordinates 

and k toy-coordinates. 

These two circles give two possible arcs between points 

P1 and P2, one in clock-wise direction and the other in 

counter-clockwise direction. To obtain required arc, one of 

the circles needs to be selected and trimmed. This selection 

is made on the basis of direction of the arc as specified by 

user. So, based on the direction of arc and orientation of 

points (P1 and P2) with respect to each other, one circle is 

selected and the other gets deleted. In the next step the 

circle is trimmed to obtain arc. For this, two boundary 

conditions are applied to both the points, each along x and 

y-axis. These conditions are also based on the orientation of 

the points P1 and P2. For example, in Figure 6(b), the blue 

circle is selected and boundary conditions are applied. For a 

point (Xm, Ym) on the periphery of the circle to lie within 

the boundary, the conditions are as follows, 
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,  

All points of blue circle satisfying the boundary 

conditions are retained while deleting others. This trimming 

process of the circle gives an arc in clockwise direction 

between the points P1 and P2. Similarly, to obtain an arc in 

counter-clockwise direction, red circle is selected. In that 

case, the boundary conditions would be, 

,  

The orientation of points plays a vital role in selection of 

circles and the boundary conditions. After trimming the 

circle, so obtained x and y-coordinates of the arc (X, Y) are 

then transferred for square activation. The process of square 

activation of an arc is similar to that of a line discussed in 

previous section where elements of workMat are 

assigned„1‟foractivation.Theindexofactivesquaresarestoredan

d transferred to the decision maker (DM) which combines 

them with corresponding construction and machining 

attributes. 

2.3 Rectangular Pocket Interpolation 

The interpolation of a rectangular pocket is not actually 

an interpolation process. But it is a more direct approach 

than interpolation and does not involve the calculation of 

data points. As discussed earlier, after defining the 

dimensions of a pocket, user is required to specify location 

of the pocket in terms of a base point. It can be any of the 

four corners of the pocket. The primary base point is the 

lower left corner of pocket which serves as a starting point 

for interpolation. Any base point can be chosen by the user, 

and by some arithmetic means it is transferred to the lower 

left corner in background. 

A loop is initialized from this point to process the points. 

In every iteration of the loop points are considered row-wise 

as shown in Figure 8. The activation of squares takes place 

within the loop while processing each point. The points are 

constrained to length and width of the pocket. Therefore, no 

point lying outside the dimensions of pocket is considered. 

The iterations are continued until the last point 

indicated in the figure. So, loop is terminated after this 

point is processed, signifying interpolation of all the 

points of a pocket. The index values of all these points 

is stored in an array during the iterations. After 

completion of the process, index values obtained from 

the loop are transferred to the decision maker (DM) in 

the form of X-Y values of points. 

Hence, a more direct approach for rectangular pockets 

is used in which no complex calculations are needed. 

Also, the process of activation takes place during 

iterations. Therefore, no separate process is required 

for square activation as in case of linear and circular 

interpolators where both processes are performed in 

two separate steps. 

 

III REDUCTION OF DISCRETE POINTS OF 
DESIGN ELEMENTS 

 

Reduction is a process of reducing the number of 

activated squares for an element. This process is 

carried out after interpolation algorithms have 

successfully calculated data points for all the elements 

defined by user. Before executing reduction 

algorithms, data arrays need to be verified and 

validated against any discrepancies. The main data 

arrays required by reduction algorithms is pData and 

toolData. Similar to interpolation algorithms, separate 

reduction algorithms are developed for linear/circular 

element and for rectangular pocket. The main 

algorithm for reduction is shown in Figure9. 
 

 
 

Figure 8. Rectangular pocket interpolator. 

 

 
Validation of data is performed by pressing 

Activate button on the control panel. When this button 

is pressed, background algorithms acquire all data 

arrays from the decision maker. These data arrays are 

then passed through various pre-defined set of 

conditions. A data array is considered as validated if it 

satisfies all the conditions. If any data array is does not 

qualify any condition, an error is issued to the user 

asking for data correction. Validated data arrays are 
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then coupled together in a structure data type, named 

vars. This structure facilitates easy availability of 

complete data to algorithms at a single place. 

 
 

Figure 9. Flow-chart of main reduction algorithm. 

 
Decision maker (DM) transfers complete vars 

structure and required data is extracted by reduction 

algorithm through simple commands. From this 

structure, pData and toolData are taken out and stored 

in local storage spaces. In the next step, each element 

is separated from pData along with complete 

construction and machining attributes. This separation 

is performed easily as the element number (eCounter) 

of an element is associated with every point of that 

element. The separated elements are stored in a cell 

named „q‟ where points bearing same eCounterare 

storedcollectively. 

The separation of elements is necessary for 

execution of reduction algorithm. This is because it 

deals with each element separately and calls 

corresponding reduction function or algorithm. After 

separating the elements, they are transferred to main 

loop of the algorithm. This loop is executed till every 

element is reduced. 

At the start of the main loop, one element is 

retrieved from q cell. It also supplies the radius value 

for the current element which distinguish the element 

as linear, circular or pocket. For this element, the 

points lying on the edges or corners are obtained 

through  an  algorithm  named  „EPSA‟.  It  stands  for 

„Edge PointSearch Algorithm‟, and decides which point 

are present on the corners (in lines and arcs) or on the 

edges (in rectangular pocket). It is worth mentioning 

that a reduction process is accelerated from opposite 

ends at the sametime. 

Based on the radius of current element, decision to 

call a reduction algorithm for the element is made. For 

all linear elements, the radius is always kept 0, 

whereas for a rectangular pocket, it is 1. However, a 

circular arc always have a radius greater than zero. 

The reduction process of a line and arc is performed 

by asingle function named „LCERA‟, „Linear 

&CircularElementReductionAlgorithm‟.Forapocket,it 

isperformed by „RPERA‟, „Rectangular Pocket 

ElementReduction Algorithm‟. 

These reduction algorithms perform reduction on 

the element and deliver reduced points. These reduced 

points represent the index values of R-active squares 

on the grid, and stored in an array rpData. Every 

element defined by the user passes through the loop by 

turn and reduced points are stored thereby. When all 

elements have been processed, the loop terminates. At 

the termination, the reduced points of every element 

stored in rp Data are transferred collectively to a new 
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array rpData2 while previous array gets deleted. The 

rpData2 serves as a temporary storage only and after 

organizing the data points in correct way, they are 

transferred again to newly created rpData array. 

At the end of this reduction process when all 

reduced points are retrieved from the reduction loop, it 

can now be used to modify previous data of all 

elements. It can be noted that rpData contains only X- 

Y coordinates of the points and no other data. The 

pData, which contains all the data in combined form, 

is modified according to this array. As a safety 

precaution, pData is not modified directly, but first a 

copy of this array is prepared. This new array is then 

modified as reduced points and the data concerned is 

kept and other points as well as their data is deleted. 

After completion of modification process, which is 

performed in a loop, provisions are made to check data 

validity and other discrepancies. At last, results are 

shown on screen and the modified array replaces old 

pData, thus reducing the number of points or say, 

number of active squares. 

 

3.1 Edge Points Search Algorithm(EPSA) 
 

The primary purpose of this search algorithm is to 

determine the points lying on the corners or at edges. 

We have discussed above how reduction process takes 

place. The process starts simultaneously from opposite 

ends, i.e. from both end points in case of line and arcs. 

In case of rectangular pocket, the reduction process is 

performed in two rounds, i.e. first from both upper and 

lower edges, and then from both left and right edges. 

Therefore, determination of these corners and edge 

points becomes a necessity. 

The data related to the element under reduction is 

transferred to EPSA in the main reduction loop. After 

receiving the data, radius is checked to determine the 

type of current element. If it is a line or arc, then the 

two end points are placed in an array (Edges) and 

transferred back to the main loop. It is a simple 

process and does not take much computational efforts. 

But to process a pocket, a loop is initialized and all 

points of the pocket element are passed through 

theloop. 

It is important to understand default sequencing of 

the points of an element first. When the grid is mapped 

as a matrix array and active squares are assigned a 

value of 1, the location or index of these active squares 

are stored in pData array. The points are arranged row- 

wise in the array along with their associated data, i.e. 

all points in first row, then second row, and so on. It 

can be observed that all points in a row are collinear as 

well as adjacent to each other. This property of point 

arrangement is useful for determining the points lying 

on the edges. While in loop, three consecutive points 

are selected simultaneously at every iteration. These 

points are then passed through two conditions related 

to adjacency and collinearity. It is evident that 

condition of adjacency and collinearity breaks between 

last points of one and first point of the second row. For 

instance, points in first row are all collinear as well as 

adjacent from 1 to 5. The last pair of three point 

satisfying this condition is of points 3, 4 and 5. The 

next pair would be 4, 5 and 6, in which first two points 

are adjacent (4 and 5) and three points are not 

collinear. This is the first condition. For every such 

pair of three points where none is collinear and first 

two are adjacent, the middle point belongs to the right 

edge and hence stored in C2 array. Similarly, if none 

are collinear and last two points are adjacent, then the 

middle point belongs to the left edge which is stored in 

C1 array. This procedure is repeated until every point 

the element is processed. 

Thepointsshadedinred(6,11,16,21)arestored in C1 and 

those in blue (5, 10, 15, 20) are stored in C2. In this 

process the first and the last points, viz. point 1 and 25 

cannot be checked through adjacency and collinearity 

conditions as they are no points to pair with. 

Therefore, the first point is added at top of C1 and the 

last point is added to the bottom of C2 to obtain 

complete left and rightedges. 

The above loop derives only left and right edges 

from given points of the element. No complex 

procedures are needed to obtain the upper and lower 

edges. The points in first row of the element form the 

lower edge, excluding the end points. Similarly, the 

points in the last row between two end points form the 

upper edge. It is worth mentioning here that a point 

included in left or right edge need not be included in 

upper or lower edge. Thus, points 2, 3, and 4 form the 

lower edge, while 22, 23 and 24 form the upper edge.
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All the three edges obtained in this way are stored in 

different arrays named edge1, edge2, edge3, edge4. 

These arrays are then combined in a single array 

named Edges and transferred to the main reduction 

algorithm for further processing. 

 

3.2 Linear and Circular Element Reduction 
Algorithm(LCERA) 

 

The reduction process is described in previous 

sections. Reduction of a linear element as well as 

circular element are carried out by a single algorithm 

function. This is mainly due to the fact that both the 

entities have two end points and interpolated data 

points in between. Reduction is initialized from both 

end points at the same time. This reduction procedure 

of the elements is called „Linear and Circular Element 

Reduction Algorithm (LCERA)‟. This can be regarded 

as a sub-function of main reduction algorithm. This 

sub-function is completely controlled by main 

algorithm and called uponrequirement. 

LCERA is complex algorithm constituting a 

number of calculations and processes through loops 

and conditions. The working of LCERA is shown in 

Figure 13. It is called by the main algorithm when it 

encounters a linear or circular element and transfers 

data of elements in an array Element. The radius of 

tool drives the process forward eliminating the points 

lying inside the tool vicinity. For reduction of a line or 

arc, the tool radius must be larger than the distance 

between the end points of line or arc. If it is greater 

than the distance, all the points would lie inside its 

vicinity and hence every point would be eliminated. 

To avoid this problem, a condition is applied at the 

beginning of main loop of LCERA to check the radius 

value of tool against the distance between endpoints. 

 

 

 

 

 

 

 
 

Figure 12. Mechanism of LCERA. 
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Figure 14. Reduced points obtainedat 
successive iterations. 

 

 

Figure 13. Flow-chart and working of LCERA. 
 

In this process, reduction is initialized from both the end 

points  simultaneously.  The  end  points  are  considered as 

„cornerpoints‟whileremainingpointsbetweenthemare 

termedas„middlepoints‟.Forinstance,inFigure12(a),a1and a2 

(in red) are the corner points while others are middle points. 

These points are sorted in the beginning by algorithm. After 

selecting the corner points for current iteration, the search 

for next corner points is triggered. The search is carried out 

from the middle points only, ignoring any other points 

which lie out of bounds of both end points. To get the 

indices of middle points, indices of corner points are 

determined first. The indices between these two values 

denote the middle points. All these middle points are stored 

in an array named dElement, copied from Element. This is a 

temporary array, and the search of next corner points is 

performed involving only the points stored here. To do so, 

the distances of all points in dElement from both corner 

points is calculated. This is done in a loop and the values are 

stored in arrays d1 and d2, where d1 contains value of 

distances of all dElement points from first corner point, and 

d2 from second corner point. From all these distances, the 

value of distance nearest to the tool periphery are obtained 

from both d1 and d2, and stored in a11 and a22. It can be 

noted that the distance stored in a11 is closest to a1 while 

that in a22 is closest to a2. Before progressing further, a 

termination condition is set up at this point. The condition 

implies that a11 and a22 must not be empty. If a11 and a22 

are empty it means that no point is closest to a1 and a2, 

respectively. This condition is used to terminate the loop 

and return values obtained so far. The condition checks the 

values of thus obtained closest distances (a11 and a22). 

There might be some cases where no such point exists in 

dElement which have the distance as per above specified 

condition. This happens whenever all points of dElement lie 

within the vicinity of the tool, or the two corner points are 

so close to each other that there is no middle point in 

existence (in dElement). In these two cases, it is concluded 

that all points of the element have been processed and no 

further reduction can take place. The arrays a11 and a22 in 

termination cases are found to beempty. 



|| Volume 4 || Issue 2 || February 2019 || ISSN (Online) 2456-0774 

INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH 

AND ENGINEERING TRENDS 

WWW.IJASRET.COM 41 

 

 

In the next step after termination criterion in overlooked, 

the points located at these closest distances are obtained by 

first finding the location/index of these distances in d1 and 

d2 arrays and then getting the points from dElement lying at 

those locations. These new obtained points are then stored 

in a11 and a22, replacing previously stored distance values. 

Thus, the points closest to tool periphery from both end 

points are a11 and a22, shown in Figure 12(a) (in blue). 

These two points are stored in a local array namedrpdata. 

 

Both corner points and middle points keep changing at 

every iteration. The new points obtained, a11 and a22, 

replace previous corner points a1 and a2. The next iteration 

continues considering new corner points. In this iteration 

middle points would limit to new corner points only.  

Further corner points obtained in this iteration would again 

be stored in rpdata and the process continues. In this way, 

till the last iteration of the loop, a set of corner points is 

obtained. These are termed as the reduced points of the 

element. The linear element shown in Figure 12 would be 

reduced after three iterations. The points obtained at 

successive iterations i1, i2 and i3 are shown in Figure 14. In 

this case, the loop terminates after iteration i3 is completed. 

After i3, all the remaining points would lie in the vicinity of 

the tool or there may be no further points. Thus, the 

termination criterion is satisfied and points obtained till i3 

iteration in rpdata are returned by thealgorithm. 

 

The array rpdata contains all points obtained through 

iterations. This array is then copied to a global array named 

rpData which is then returned back to the main reduction 

algorithm. This loop is able to reduce a linear and circular 

element of any size and dimensions. The algorithm is called 

bythe main reduction algorithm and is not available 

explicitly to other algorithms and functions. 

 
3.3 Rectangular Pocket Element ReductionAlgorithm 

(RPERA) 

 

The reduction algorithm developed for reducing a 

rectangular pocket element is „Rectangular Pocket Element 

ReductionAlgorithm(RPERA)‟.Thisalgorithmissimilarin 

function to LCERA. The key difference between the two 

algorithms is that while LCERA deals with one corner point 

from both ends, RPERA deals with a set of corner points 

first at left-right edges and then upper-lower edges. This set 

of corner points contains the points lying at an edge of the 

pocket. These edge points are supplied by Edge Points 

Search Algorithm (EPSA). All points lying on one edge are 

processed simultaneously by the algorithm. Therefore, this 

algorithm comprises of a number of loops, more than that in 

LCERA. Also there is an increase in computational 

complexities due to presence of loops, data storage arrays 

and a large number of calculations. As a pocket contains 

vast number of active squares, this algorithm has to deal 

with a rich space. Due to these reasons, it became obligatory 

to make this algorithm as compact and effective as possible 

to avoid any discrepancies. It can be said that RPERA is one 

of the most complex algorithm of the wholeframework. 

 

 

 
 

Figure 14. Reduced points obtained at successive iterations. 
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Figure 15. Flow-chart and working of RPERA. 

 

The working of RPERA is shown inFigure 15. This 

algorithm, similar to LCERA, is completely controlled by 

the main reduction algorithm. The main algorithm supplies 

necessary information related to the element and tool in the 

form of an array Element. Here also, a termination condition 

at the beginning of the main loop is present. This condition 

is similar to the first termination condition of LCERA. In 

this case, the size of the tool is compared with the length or 

width of the pocket (whichever is the shortest). For a 

successful reduction, the radius of tool must be less than 

half the length or width of the pocket, L. Further execution 

takes place if this condition is not satisfied, otherwise an 

error is issued to the user informing about tool size. In the 

next step, all edges in Element are sorted  and  re-organized.  

The  edges  retrievedfrom EPSA,i.e. edge1, edge2, edge3, 

and edge4, are sorted as edgLeft, edgRight, edgDown and 

edgUp, respectively and stored againinElement.The edge is 

also created to assist the loop in creating opposite edges 

simultaneously. 

As indicated in Figure 15, a number of loops are present i 

the algorithm. Of them, Loop 1 is the main loop that 

executes all other sub- loops such as Loop 1.1 and Loop 1.2. 

There are also two sub-

loopofLoop1.2,indicatedasLoop1.2.1andLoop 

1.2.2. The main loop is executed twice, once for upper- 

lower edges and again for left-right edges. Each time, two 

oppositeedgesareselected,startingfromupperandlower 
 

 

Figure 16. Axis bounds (upper and lower edges). 
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Figure 17. Mechanism of RPERA 
 

 

 

Figure 18. Various distances between new and old 

edges. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 19. Various distances for left-right 

edges. 

Edges. This set of edges is retrieved from allEdges array 

as shown in Figure 16, first edge (edgDown) is copied in 

edge1 and second (edgeUp) in edge2. Both these edges are 

then stored in a new array named udEdges. The points lying 

on both these edges are considered as the corner points. 

Similar to LCERA, the middle points between upper and 

lower edges are copied to dElement from Element. The next 

corners are to be searched from dElement. For sorting of 

elements to dElement, a sub loop of the main loop (Loop 

1.1) is used. In this loop, at every iteration a points from 

Element is selected, Pm with coordinates (Xm, Ym). The 

condition for entry of a point in dElement is applied to this 

point. According to this condition, the x-coordinate of the 

point, 

Xm, must lie between minimum and maximum value of x- 

coordinates of an edge (i.e. X1 and X2). Similarly, the y- 

coordinate of the point, Ym, must lie between minimum and 

maximum values of y-coordinate of both edges (i.e. Y1 and 

Y2), as shown in Figure 16. All points satisfying this 

condition are copied from Element to dElement. 

 

In the next step new corner points are searched from 

dElement, Loop 1.2 is employed for this purpose. This loop 

also consists of two iterations, one for each edge. In the first 

iteration, first edge stored in udEdges is selected, i.e. edge1. 

Now, from all the corner points which constitute this edge 

distance of all middle points is calculated. This requires a 

lot of computational time as the number of points under 

processing is very large. Loop 1.2.1 performs these 

calculations;foreachcornerpoint„I‟,thedistanceofamiddlepoint

s„j‟isstoredinanarraydj,i.Asamatteroffact, for first corner 

point the distances of all middle points are kept in the first 

column of d, and for second corner point, in second column, 

and so on. After every point has been processed, number of 

columns of d would be equal to the number of corner points, 

and number of rows would be equal to total number of 

middle points in dElement. As the distance of every middle 

point from corner points has been calculated, new corner 

points can now be obtained using these distances. This 

process is similar to that in LCERA where points closest to 

the tool periphery are selected for a corner point on both 

sides. Here in this case, all corner points of edge1 are 

processed simultaneously as compared to LCERA. In other 

words, points closest to tool periphery are obtained for 

every corner point one by one. This is accomplished through 

a loop (Loop1.2.2). 

 

Foracornerpoint„p‟,correspondingcolumnofdistances is 

copied from multi-column array d and stored in a temporary 

single-column array D. This array changes at every iteration 

as values of distances for current point is copied to it. From 

the values of distances the closest distance (a) to tool 

periphery is searched and its index inthe 
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column is saved in array I. There can be multiple values of a 

because of more than one point satisfying the above 

condition of closeness. In that case the number of indices 

would be more than one, that is, I would contain more than 

one index. The points present at these indices in dElement 

would be the next possible corner points. A possible corner 

point means that it has to pass through a condition to be 

selected as a corner point. Note that one condition of axis 

bounds has already been applied while copying points from 

Element to dElement as discussed previously. The next 

condition implies that the new corner points must not lie on 

the same axis as old corner point (y-axis in case of upper-

lower edges and x-axis for left-right edges). The points not 

satisfying this condition are eliminated while other are 

retained and stored in array data. Loop 1.2.2 processes all 

corner points of edge1 and new corner points are stored in 

data array. In the next step, these corner points are 

transferred to array rpdata1 while array data is erased to be 

used for next iteration. The second iteration of Loop 1.2 

takes place considering edge2 now. The same process is 

repeated for all corner points of edge2 in Loop 1.2.1 and 

Loop 1.2.2. After processing of all corner points the values 

are stored in data array. The new corner points for edge2 are 

then transferred to rpdata1 array. 

 

These new corner points for both the edges constitute 

new edges as shown in Figure 17. At this point in Loop 1, a 

termination condition is applied. This is the only 

termination condition in entire algorithm. To check the 

condition, three types of distances are calculated between 

old edges and new edges. These distances are shownin 

 

 
Figure 20. Axis bounds for left-right edges. 

Figure 18, namely d1, d2 and d3. The distance d1 is 

calculated between y-coordinate of edge1new and edge1, d2 

is calculated between y-coordinate of edge2 and edge2new, 

and the distance d3 is calculated between both the new 

edges, i.e. edge2new and edge1new. These distances are 

used to check the validity of newly obtained edge. For a 

new edge or set of two edges to be valid, d1 and d2 must be 

equal to the tool radius, and d3 must be greater than 1 not 

zero or negative. If the set does not qualify this validity test, 

termination condition forces the loop to break and halt 

further execution. In case when the edges are found to be 

valid, they replace both old edges; after which they are 

stored in new array named rpdata (not to be confused with 

rpdata1 array, see note on next page). This array is the main 

storage array of Loop 1 where all newly obtained edges 

(corner points) are stored. 

 

The new points obtained in this iteration are considered 

as corner points for the next iteration. Taking these into 

consideration, above procedure is repeated to get another set 

of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 21. Reduced points obtained after completion 

of algorithm. 

 
corner points. This process is repeated a number of times to 

obtain sets of corner points. Only when the edges formed by 

corner points are close enough that no further reduction is 

possible, termination criterion halts the processing. All the 

corner points obtained through iterations are stored in 

rpdata. Note that these pointsarethereducedpointsforupper-

loweredges.Inthe 
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Figure 22. A clutch bell (3D Model). 

next step, second iteration of Loop 1 is initialized. This time 

the edges to be considered are left-right edges instead of 

upper-lower. It has discussed previously that reduction for 

upper-lower edges takes place considering all points of 

Element. From these points, reduced points are obtained. 

Now, for left-right edges not all points are considered but 

reduced points of upper-lower edges are taken into account. 

In this way, points reduced in vertical direction would now 

be reduced horizontally. Hence, left and right edges are 

retrieved from allEdges and stored in edge1 and edge2, 

respectively. Furthermore, edge1 and edge2 are transferred 

to udEdges as in previous iteration. 

 

Next step follows copying points to dElement for further 

processing. As stated above, the points are copied from 

rpdata which contains previously reduced points. From 

corner points of left-right edges, new corner points are 

obtained through Loop 1.2. Same procedure is repeated in 

this case as for upper-lower edges. Loops 1.2.1 and 1.2.2 are 

executed similarly to find corner points. The conditions of 

axis bounds remain the same in this case too apart from a 

few modifications. These condition are shown in Figure 19. 

The only visible change is the orientation of the edges, other 

bounds remain similar to previously discussed bounds for 

upper-lower edges. Based on these conditions, points from 

rpdata are copied to dElement which is then followed by 

calculation of distances. The closest distances are 

determined and corresponding points from dElement are 

obtained which constitute new edges. But these edges have 

to be valid to be used for future iterations. Therefore, a 

validation test similar to previous case is used, shown in 

Figure 19. To qualify as valid edges, values of d1 and d2 

must be equal to the tool radius, and d3 must be greater than 

1. Edges qualifying these conditions then replace the old 

edges (corner points) and serve as edge1 and edge2 for next 

iteration. These edges or points are stored in rpdata1 and 

after completion of all iterations, complete set of points is 

stored in rpdata array. In this way the points obtained after 

reduction of upper-lower edges are again reduced with 

respect to left-right edges. 

 

After all iterations have been completed and all corner 

points are obtained, they are then transferred to array rpData 

for output. We have seen that reduction of linear or circular 

elements (LCERA) yields a set of points at some distance 

from each other. In case of rectangular pocket (RPERA), a 

grid pattern of reduced points is obtained, which means the 

points lie in two directions. Figure 21 shows the reduced  

points of the rectangular pocket. It can be seen that all 

points of the rectangular pocket have been reduced to the 

points shown (in green). These points are obtained after 

reduction in context of upper-lower as well asleft-right 

edges. In both the case, two iterations proved to be enough 

for reduction. The iterations for upper-lower edges are i1 

and i2 while that for left-right edges are j1 andj2. 

 

It is evident from Figure 21 that a small number of points 

are obtained as compared to actual number of points in a 

rectangular pocket. RPERA is able to reduce a rectangular 

pocket of any size efficiently. The algorithm is more 

sophisticated than LCERA as the former deals with lesser 

number of points. The chances of error have been reduced 

by incorporating various conditions and checks inthe 
 

 

Figure 23. Part for experimentation and testing. 

algorithms. This makes the algorithm well suited for 

reduction purposes. Apart from the main reduction 

algorithm, we have discussed three algorithms, namely 

EPSA, LCERA and RPERA. These are the backbone of 

reduction process. Every algorithm does its pre-defined 

work based on a set of rule and procedures. These 

algorithms together make reduction process a powerful tool 

and one of the most complex procedure in the entire 

framework. 
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IV RESULTS AND DISCUSSION 

 
To test the validity and performance of the above 

algorithms, a genetic algorithm (GA) based optimization of 

pocket milling is considered. The workpiece inspired by a 

clutch bell (Figure 22) of size 50x50 mm is defined and five 

rectangular pocket elements are added as shown in the 

Figure 23. 

 

After defining the dimensions and other 

parameters, interpolation algorithms were used to model the 

test part as shown in Figure 24a. The reduction algorithms 

were then implemented to decrease the number of discrete 

squares as shown in Figure 24b. It is evident from Figure 24 

that, the reduction algorithm significantly decreased the 

discrete squares required to model the testpart. 

The reduction algorithm is a key component of the 

proposed framework. It reduces the number of squares and 

hence the search space by considering tool offsets. The 

reduction of an element is performed on the basis of tool 

size defined by user for that element. A number of 

experiments have been conducted test the levels of 

reduction and its effects of computational time and 

convergence of the solution ofGA. 

 

A large number of squares increase the length of 

chromosomes in a GA population. This large-sized 

population thus takes a long time to achieve convergence as 

slow improvement takes place. Convergence is largely 

affected by the length of chromosome, size of population, 

and other factors such as crossover and mutation rates. The 

results of experiments are shown below in Table 1 

 

Table 1. Experiment results showing number of squares and convergence time. 

 

 

Sr. No. 

 

Element Size (mm) 

 

No. of squares 

(Interpolation) 

 

No. of squares 

(Reduction) 

 

Time1 

 

Time2 

 

1. 

 

10 x 10 

 

121 

 

16 

 

>3 hrs. 

 

85 sec 

 

2. 

 

12 x 12 

 

169 

 

25 

 

>5 hrs. 

 

160 sec 

 

3. 

 

20 x 20 

 

441 

 

36 

 

>10 hrs. 

 

7.5 min 

 

4. 

 

20 x 20 

 

441 

 

16 

 

>10 hrs. 

 

85 sec 

 

5. 

 

30 x 30 

 

961 

 

81 

 

>1 day 

 

20 min 

 

6. 

 

30 x 30 

 

961 

 

64 

 

>1 day. 

 

12 min 

R

E

F

E

R

E

N

C

Figure 24. (a) Interpolated squares of test part, (b) Reduced squares of test part. 
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It is evident from the table that a large number of 

squares are generated by interpolation. Even a small pocket 

of 1cm size is defined by 121 squares. So, in this case, the 

length of one chromosome would be 121. To process such 

as large size chromosomes, calculate their fitness values and 

reproducing offspring becomes very difficult and time 

consuming. As there are a number of such chromosomes 

present in the population, it is no less than a nightmare for 

any optimization technique. GA being a probabilistic 

approach would keep on testing and recombining 

chromosomes in search for at least satisfactory fitness 

levels. In fact, search space becomes very large and chances 

of finding global optimum or even converging to a solution 

arereduced. 

 

The reduction algorithm is shown to have a 

positive effect on both the search space size and 

convergencetime.Areductionofsearchspaceby85to90 

% is observed depending upon the number of elements and 

size of tools. For example, in the first experiment, a pocket 

having 121 squares is reduced to only 16 squares and 

convergence time is reduced from more than 3 hours to only 

85 seconds. A drastic reduction in convergence time is thus 

observed from the table. Time is reduced by ~ 98% in all 

the experiments meaning that convergence is achieved in 

very less time after performing reduction. This allows to 

optimize toolpaths for parts containing large design 

elements in comparatively less time. A task which would 

otherwise require hours of computational times even on 

high-end CPUs. 

 
V CONCLUSION 

 
In this paper, algorithms for interpolation and 

reduction of discrete elements were presented. These 

algorithms are utilized in approximation and modeling of 

work area in pocket milling. The algorithms are developed 

for linear element, circular element and rectangular pocket 

element. It was observed that interpolation results in large 

number of discrete squares which in turn increases the 

search space and hence convergence time of optimization 

method. The reduction process allows decreasing of discrete 

squares by considering tool offset values. The results 

indicate a huge reduction in the search space as well as 

convergence time of optimizationmethods.  
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