Using Explicit Semantic Similarity for an Improved Web Explorer with ontology and TF-IDF

Syed Hafeez, Balkrishna Patil
Master of Engineering, Department of Computer Science and Engineering, Everest Education Society’s College of Engineering and technology, Aurangabad, India

Abstract—The Improved Web Explorer aims at extraction and selection of the best possible hyperlinks and retrieving more accurate search results for the entered search query. The Explicit Semantic Similarity analysis along with Naïve Bayes method is used to find the semantic similarity between lexically different terms using Wikipedia and Google as explicit semantic analysis tools and calculating the probabilities of occurrence of words in anchor and body texts. Term frequency and Inverse document frequency values, and then calculate cosine similarities between the entered Search query and extracted relevant hyperlinks to get the most appropriate relevance wise ranked search results to the entered search string.

Keywords:- Web-Explorer, TF-IDF, Lexical, Ontology, Explicit Semantic similarity analysis.

I INTRODUCTION

Web Explorer is nothing but a web spider that traverses various links available on the world wide web. The widely spread web represents voluminous data from different contexts, different geographical locations and different intents. However retrieval of precise data based on the intent of the search is of utmost important to maintain the interests in web traversal. The task of prime importance is to traverse the hyperlinks on the web and find out the seed links that might be of interest to the search. The selection of the hyperlink is essential to ascertain the relevance of web pages with the entered search string. The ascertained links are classified into two types: the seed URLs from the Internet and the updated URLs from the unvisited list [1]. The seed URLs that are related to a search string can be extracted from the gathered search results, which are retrieved by appending Google provided API to gather search results i.e.http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=YourSearchString Here. The first task is to find file type of pages linked with the urls. Each Page however has title text anchor text and body text. These types of text can be used efficiently by assigning weights and considering frequencies of words in search string to calculate relevance of linked page with the search string.

Figure 1 VSM, Mouse Keyword matches the two documents but the context is different.

Figure 2 Ontology, Different ontology’s of apple are considered but Apple and Apple Inc cannot be contextually differentiated.

Thus ontology is used to find out the synonyms, hyponyms and hyponyms to be able to gain more insight of the context of the search query. For e.g. apple has hyponyms as pine apple, custard apple, etc. and its hyponym is fruit, apple may have a synonym as its biological name. The definition of apple may contain some words that represent some other fruit with same properties that search might be interested in such as sweet fruit.

Some of the technical terms or names of companies cannot be found in dictionaries nor have any relations like hyponyms, hyponyms and synonyms. In such case Semantic analysis from an external source can be considered such as Wikipedia or Google. Semantic Similarity can be calculated by
again taking into consideration different contexts of the same keyword by calculating naïve Bayesian probabilities for links in Wikipedia or Google representing different contexts.

![Graph showing explicit semantic search](image)

Figure 3 Explicit Semantic Search. Wikipedia can help us distinguish between Apple Fruit and Apple Company.

Thus the proposed system is the combination of Vector Space Model, Ontology based Semantic Similarity and Explicit Semantic analysis of the entered search string.

Our model is helpful in determining more accurate search result links by traversing its contents checking ontology’s, determining semantic similarity from external sources such as Wikipedia then computing Tf-Idf values and finally aggregating the weighted average to obtain most relevant resulting links.

II RELATED WORK

Our model extracts the most relevant hyperlinks to an entered search query. This can be achieved by aggregating results of Vector Space Model, Semantic Similarity model using ontology’s and External Source and computing the cosine similarity between traversed links and the search query.

TF-IDF Approach: Term Frequency Inverse Document Frequency approach sequentially first of all calculates keywords by removing stop words from documents such as a, an, the, is, for, etc. Then for remaining terms which are said to be keywords form the query the term frequency is normalized in huge datasets by dividing the frequency count with total count of the term t in all documents.

The term frequency is given by:

\[TF(t,d) = \frac{f(t,d)}{N} \]

Where \(f(t,d) \) is frequency of occurrences of term t in document D.

The Inverse Document Frequency (IDF) of term t is given by:

\[IDF(t) = \log \left(\frac{N}{\text{doc freq}(t)} \right) \]

Where \(N \) is total number of documents.

RelScore(d) is the TF-IDF value of document which can also be called as the document vector. Now the same procedure is followed to calculate query vector for entered search string where term frequency of absent terms is taken as 0 and multiplying it with IDF values previously calculated. Now the similarity between Document vectors and Query vector is calculated by vector space model to compute cosine similarity using

\[\text{Sim}(q, d) = \frac{\sum_{i} q_i d_i}{\sqrt{\sum_{i} q_i^2} \sqrt{\sum_{i} d_i^2}} \]

Where q is the query vector and d is document vector.

Semantic Similarity with Ontology:

Semantic similarity model works in three steps

The weight \(q_i \) of each query term i is adjusted based on its relationships with other semantically similar terms j within the same vector

\[q_i' = q_i + \sum_{\text{sim}(i,j)>t} q_j \cdot \text{sim}(i,j), \]

Where t is a user defined threshold (t = 0:8 in this work). Multiple related terms in the same query reinforce each other (e.g., “railway”, “train”, “metro”). The weights of non-similar terms remain unchanged (e.g., “train”, “house”). For short queries specifying only a few terms the weights are initialized to 1 and are adjusted according to the above formula.[3]
example in the words Induction and Deduction definition they are antonyms.

Co-occurring terms = Words that are joint e.g. Railway station Phrases=Incandescent light where synset of incandescent includes light.

Explicit Semantic Analysis:

Wikipedia is the largest online data library with different contexts related to the same term which can also retrieve appropriate results for non-dictionary terms or names that cannot have ontology’s or word background to retrieve more about its related context. So Wikipedia along with naïve bayes can help us retrieve probabilities of terms in search query and thus semantic relatedness of search string to the Wikipedia pages so far retrieved.[5]

III SYSTEM DEVELOPMENT

The search string is appended to the Google search api to retrieve the seed urls of entered query. The preference of links can be computed using the comparison of Anchor texts, title texts and body texts of the links in the seed url. Along with that the Ontology based on weighted relationships of synonyms, hyponyms and hyperyms etc. is calculated. Further the explicit semantic similarity between search string and Wikipedia pages related to different contexts of query terms are computed and the tf-idf approach is used to compute query and document vectors. The average of all the methods provides us with a score that decides the relevance of the entered query with the hyperlinks based on all calculations. The greater is the value of score for a link ,the more is the document relevance, semantically and contextually to the link.

IV CONCLUSION

This method is proposed to improve the efficiency of Web explorer by combining the Vector Space Model that computes similarity between two objects containing common terms, Semantic similarity method with ontology’s that provides the related and alternate terms for queries there by increasing the scope of search, Explicit Semantic Similarity that helps retrieval of information about terms that are not possible with ontology’s within different contexts. Thus it is now possible to create a web explorer that can remain focused and explores a greater scope to retrieve more contextually relevant links.

REFERENCES

