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Abstract 

An Image texture, as a form of particular variation, affords vital information for the human 

visible device. It is difficult to keep most people of photo textures, particularly the small-scale or 

stochastic textures which are wealthy in high-frequency variations. Current brand new denoising 

algorithms generally adopt a non-regional approach consisting of picture patch grouping and 

organization-clever denoising filtering.  

While holding the versions in texture to obtain a better photo denoising, we first deceptively 

organization fantastically correlated photograph patches with the same kinds of texture factors 

through an adaptive clustering method. This adaptive clustering approach is implemented in an over-

clustering- and-iterative-merging technique, wherein its noise robustness is advanced with a custom 

merging threshold regarding the noise level and cluster length. For texture-keeping of each cluster 

denoising, bear in mind that the versions in each texture are captured and wrapped in no longer most 

effective the among-size electricity variations but additionally the inside-size versions of PCA rework 

coefficients, accompanied by we suggest a PCA-transform- domain variant adaptive filtering 

technique to maintain the local versions in textures.  

A test on images shows the conventional PCA-based totally tough or smooth threshold 

filtering to superiority of the proposed remodel-domain version adaptive filtering. As an entire, the 

proposed denoising approach achieves a commending texture-maintaining performance each 

quantitatively and visually, mainly for irregular textures, that is in addition verified in digital camera 

raw picture denoising. 

Index Terms 

Texture-maintaining denoising, adaptive clustering, principal component aspect evaluation 

transform, suboptimal Wiener filter out, LPA-ICI. 

------------------------------------------------------ ***-------------------------------------------------- 
CHAPTER 1 

INTRODUCTION 

Digital images are common means to 

carry the information from or of a scene to the 

user in terms of visual perceptions. Image 

processing   techniques are therefore 

indispensable assets to restore degradations of 

the information conveyed to a viewer or a 

computer for further analysis. There is a wide 

range of scientific and engineering   applications 

that require visual information. Examples 

include medical diagnosis of tomography scout 

images and uses in remote sensing of the earth 

for resource exploration [1,2]..  

The problem of image enhancement had 

been tackled with focus on the preservation or 

enhancement of object edges in the image [7]. A 

color saturation boost operation is first carried 

out and then rectified for edge preservation. 

Another method was proposed which employs a 

morphological filter to enhance edges for an 

increased sharpness on the resultant image [8]. 
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The contrast enhancement problem was also 

approached adopting a block-based enhancement 

strategy [9,10]. These localized enhancement 

approaches could be more complicated in their 

implementations when comparing to the class of 

global histogram equalization methods. Image 

enhancement algorithms based on histogram 

equalization are often categorized as a statistical 

and global approach [11] 

In addition to separating the image into 

high and low brightness sub-images as 

aforementioned, contrast enhancement could 

also be accomplished by modifying and 

specifying a target density profile in histogram 

equalization. For instance, the input histogram 

was smoothed using an intensity-based window 

width [22]. The strategy reported therein can be 

further extended to return an output image 

brightness which is adjusted to that of the input 

image. In this work, a new method is proposed 

to reduce the difficulties encountered in 

choosing a proper sub-image division threshold. 

First, the mean brightness of the input image is 

calculated. Then depending on its magnitude as 

compared to half of the maximum intensity, a 

target histogram that balances the histogram 

areas over the desired mean is specified. The 

input image is then equalized, guaranteeing a 

mean brightness close to the input image. 

HISTOGRAM EQUALIZATION 

Histogram equalization for brightness 

preservation While attempts had been made to 

restore image contrasts from Degraded sources, 

researchers had paid attention to drawbacks 

found on the histogram equalization method 

where the resultant mean brightness is deviated 

from the input image. A class of techniques to 

maintain the brightness was then developed. 

Their salient features are reviewed below. 

Conventional Histogram Equalization 

Let an input image be given as I={I(u, v)}∈ [0, L 

- 1], where(u,v) is the pixel coordinate and I(u, 

v) ∈Z is the pixel intensityor brightness ranging 

from 0 to L - 1. For an 8-bit digital image,L=28= 

256. The image resolution is U × V width-by-

height and u = 1,··· , U, v= 1, ···, V. A 

histogram is formed and then normalized to 

Give the probability density, from gathering the 

number of pixels n(i) that have intensity value i, 

that is [11] 

 

A cumulative distribution function is formed 

from 

 

Bi-histogram Equalization  

This method is based on using the input image 

mean intensity as threshold [17]. After the mean 

brightness is calculated, the pixels are then 

separated into the lower and higher groups or 

sub-images according to the mean value, 

 

Furthermore, two cumulative density functions 

are constructed from the two groups, that is, 

 

The mean brightness of the output image is the 

averaged value of the mean brightness of the two 

sub-images. Note that the result may be different 

from the input mean brightness. 

Existing Methodology 

Texture, as a systematic local variation of image 

values, is an essential component of natural 

visual information reflecting the physical 

properties of the surrounding environment [1]. 

There are two basic types of texture pattern: 

regular texture that consists of repeated texture 

elements (texels) and stochastic texture without 

explicit texels [2], [3] Most of the real-world 

textures locate in-between these two extremes. 

Preservation of texture variation is necessary for 

image pre-processing tasks such as image 

denoising [2], [4], so as to help make better use 



                                                    || Volume 5 || Issue 8 || August 2020 || ISSN (Online) 2456-0774 

                       INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH  

                                                                        AND ENGINEERING TRENDS 

                                         WWW.IJASRET.COM                                                                   157 

 
 

of natural feature details for image content 

interpretation. These feature-preserving image 

processing researches [2], [5]–[7] have attracted 

great attention in recent years. However, texture 

variation, especially the small-scale or stochastic 

texture variation often lies in high frequency 

bands. These high frequency variations are 

difficult to be preserved during noise removal 

and tend to be smoothed. The existing state-of-

the-art denoising methods often adopt the 

nonlocal methodology [8]–[10], which firstly 

uses patch grouping (PG) techniques to exploit 

the nonlocal self-similarity (NSS) prior in 

natural images, and then uses denoising filters 

(DF) for group-wise denoising. Over-

smoothness of the image textures is caused by 

the deficiencies in both PG and DF procedures. 

PG techniques collect similar (high-correlated) 

patches together so that DF can exploit the NSS 

to boost the denoising performance. During the 

PG process, if dissimilar patches are gathered in 

the same patch group, it would be much more 

difficult for DF to preserve the texture 

variations. On the other hand, applying K-means 

clustering to image patches can lead to heavy 

computational burden due to the high 

dimensionality of image data. To overcome 

these problems, an efficient adaptive clustering 

method is designed in AC-PT [6], which not 

only determines the optimal cluster number 

automatically, but also accelerates the clustering 

without dimension reduction that can lead to the 

information loss. However, in case of high noise 

level, slight under-segmentation still can be 

observed. 

 

Fig. 1. The between- and within-dimension 

variations of PCA transform coefficients for a 

patch-group matrix consisting of similar patches. 

(a) The first dimension (signal-dominant) in 

PCA transform domain, (b) The last dimension 

(noise-dominant) in PCA transform domain. The 

difference between (a) and (b) shows the 

between-dimension variations, while the drastic 

fluctuation of coefficient value within (a) shows 

the within-dimension variations. 

Noise Model  

The additive white Gaussian noise (AWGN) is 

written as:  

y = x + n, (1)  

where x is noise-free data, y is noisy, and n 

follows the normal distribution with zero mean 

and variance σ2. AWGN is signalindependent. 

Being different from AWGN, the Poisson-

Gaussian noise corrupting the camera raw 

images that are acquired from digital cameras is 

typically signal-dependent noise. Let x be a 

noise-free signal at the position c. The observed 

data with Poisson-Gaussian noise can be written 

as:  

y(c) = ρ/α + bv, (2) 

 

Let x be the noise-free data, and the denoised 

data is treated as E[ f (y)|x]. The exact unbiased 

inverse of the GAT is defined as: 

 

Given an image  ∈ Rs×t , the total number of all 

the possible d × d overlapping patches Pi ∈ 

Rd×d is L = (s − d + 1) × (t − d + 1) with i ∈ {1, 

2,··· , L}. The observation vector yi ∈ RM×1 

with M = d2 is constructed by stretching the 

patch Pi . So the image can be represented as Y 

∈ RM×L with each column being a stretched 

patch. A certain cluster can be represented with 
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a matrix with each column representing a 

stretched patch. For any data matrix Y, we add 

the subscript c to denote the centralized matrix 

Yc = Y − E(Y), where E(·) represents the 

expectation.. For Poisson-Gaussian denoising, 

we can estimate the noise parameters as in [26] 

and then transform Poisson-Gaussian noise into 

additive white Gaussian noise with unitary 

variance. In the following part of this paper, we 

focus on illustrating the novel part of the 

proposed denoising algorithm (in the dashed red 

boxes): (1) improved adaptive patch clustering 

for PG is discussed in Section III; (2) variation-

adaptive filtering in PCA transform domain for 

DF is studied in Section IV; (3) sliding window 

and aggregation technique are discussed in 

Section V.  

AC-STEP: ADAPTIVE CLUSTERING OF 

PATCHES  

Many popular clustering algorithms 

have a common deficiency that an optimal 

number of clusters is difficult to be determined. 

However, it is easy for us to estimate an 

approximate range of the cluster number. 

Supposing the patch size is d × d and the image 

size is s × t, in most cases, the maximal cluster 

number should be below st d2 . Assuming each 

pixel to be the center of an image patch, we can 

obtain the maximal cluster number by separating 

the image into small non-overlapping segments, 

and each small segment with area approximately 

equal to d2 represents a distinct cluster. 

Meanwhile, the minimal cluster number is 1. 

Since we have the approximate range of cluster 

number (i.e., from 1 to st d2 ), an intuitive idea 

is that we can determine the optimal number of 

clusters by first obtaining the maximal number 

of clusters, and then iteratively merging the 

similar clusters according to a custom threshold. 

To this end, there are two problems that need to 

be solved: a) clustering a huge number of 

clusters requires a huge computational burden 

due to the high dimensionality of image patches; 

b) finding a way to calculate a suitable merging 

threshold for merging similar clusters. For the 

first problem, we adopt the divide and conquer 

technique [28], [29]. These two clusters obtained 

from K-means with such huge discrepancies in 

size usually have a very low probability of 

belonging to the same feature..  

 

Fig. 3. The segmentation results on the noisy 

image with σ = 50 using K-means clustering and 

the adaptive clustering methods. (a) Lena; (b) 

Noisy image; (c) The clustering result of the first 

stage based on K-means; (d) Over-clustering 

based on divide-and-conquer technique; (e) 

Adaptive clustering as in AC-PT [6]; (f) 

Adaptive clustering considering cluster size. 

Specifically, when the size of the 

smaller cluster in a pair of clusters is larger than 

a certain value LT , we decrease the probability 

of merging the different clusters by amplifying 

the between-cluster distance with an 

amplification coefficient ρ: Dˆ(B, A)2 = D(B, 

A)2/ρ. We empirically set LT = 200 and ρ = 0.7 

to get a satisfactory performance.  

IV. A-Step:Variation-Adaptive Filtering In 

Pca Domain  

In PCA transform domain, inspired by 

the between dimension energy variations and the 

within-dimension variations of PCA coefficients 

in the signal dominant dimensions with the 

highest eigen values (see Fig. 1), we use a two-

step texture variation adaptive approximation 

strategy to achieve a texture-preserving 

denoising performance. First, a low rank 

approximation is implemented via dimension 

selection based on hard thresholding of eigen 
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values to selectively preserve the energy 

variations of the signal dominant dimensions. 

Second, each signal dominant dimension is 

further denoised adaptively via a coefficient-

wise adaptive filter with locally estimated filter 

parameters to protect the underlying within-

dimension texture variations. 

A. Dimension Selection Considering the 

Between-Dimension Energy Variations 

  Since the texture information is hardly 

remained in the noise-dominant dimensions with 

the lowest eigen values, we discard the noise-

dominant dimensions via dimension selection 

before the within-dimension filtering to reduce 

the computational cost and improve the 

denoising performance. Considering the 

centralized noisy cluster matrix Yc = (yc) ∈ 

RM×L , Yc = Xc + N, where Xc = (xc) ∈ RM×L 

is noise-free and N = (n) ∈ RM×L is the noise 

matrix with each column vector ni ∼ NM (0, 

σ2I), where I is identity matrix. Suppose Yc = 

√L min(M,L) i=1 √λiuy,ivT y,i and the low rank 

approximation (with rank R) Xc = √L Rand 

singular vectors uy,i ,vy,i, ux,i and vx,i, 1 ≤ i ≤ 

min(M, L).  

B. Within-Dimension Variation Adaptive 

Filtering  

Consider the low-rank matrix YR = URPR 

obtained in the previous section, where UR 

consists of the selected eigenvectors UR = [uy,1, 

uy,2,··· , uy,R], and PR consists of the 

corresponding signal-dominant dimensions in 

PCA transform domain: PR = [p1, p2,··· , pR] T 

, (9) where pi = √Lλi vy,i (1 ≤ i ≤ R) is the 

selected PCA dimension. For illustrative 

purpose, we further extract the coefficients in 

any dimension pi = [pi,1, pi,2,··· , pi,L ] and 

denote these coefficients in the ith dimension as 

the noisy observations of a “signal sequence” 

containing L observation points: y(n) = pi,n, n = 

1, 2,··· , L. Let y(n) = f (n) + w(n), where w(n) is 

i.d.d Gaussian noise of zero mean and variance 

σ2 w = σ2, and f (n) (with variance σ2 f ) is the 

noise-free signal that we want to estimate.  

 

Fig. 4. Window-size determination based on the 

LPA-ICI method. A large patch cluster is built 

by the AC method from the noisy Lena image 

with σ = 10.  

Extension 

With the advances of remote sensing 

technology, the very high resolution (VHR) 

satellite and aerial images have been providing 

remote sensing images (RSIs) of increasing high 

spatial resolution, stable geometric location and 

detailed textural information. Two fundamental 

researches, scene-level geographic image 

classification and geospatial object detection [7], 

have gotten many attentions. However, these 

two tasks, including image analysis and search 

often suffer from poor quality of optical RSIs 

due to contrast degradation and color 

attenuation.  

 

Figure 1: Physical models of natural image 

dehazing and remote sensing image dehazing. 

To improve the quality of RSI, RSI 

enhancement has been extensively studied, 

including histogram equalization [1], 

homographic filter and Retinex theory [19] 

methods. However, this enhancement ignored 

the physical mechanism of haze so that it cannot 

remove haze adequately, usually suffering from 

over-saturation and gradient reversal artifacts. In 

fact, haze increases exponentially along with the 
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optical distances from scene objects to the 

sensor for RSIs. Hence, it is highly desirable to 

explore physical mechanism of haze for 

developing models for RSI dehazing (RSID) 

[23, 38]. Accordingly, the hazes usually have 

variety in RSIs. Thus, NID methods designed for 

a simple case cannot efficiently remove the 

hazes of RSIs. These three differences 

compromise the efficiency of a NID as it is 

applied to RSID. Although some NID models 

have been applied to RSID [24], the three 

differences should be well addressed for 

reaching their full potential. More recently, 

learning based dehazing has been developed 

extensively [6, 21].  

Recently, a bunch of deep learning 

based dehazings have been developed, such as 

DHNet [6], MS-CNN, AOD-Net [20] and 

Ranking-CNN. They directly learn transmission 

maps on given databases.  

Haze physical model for remote sensing 

image  

A RSI is captured by the camera aboard 

satellite where the camera points downward the 

ground, so it commonly has no haze-opaque 

region. The bright pixels commonly belong to 

the reflect light of objects’ surface, which cannot 

be used to calculate atmospheric light.. 

 

Iterative Dehazing for Remote Sensing image 

(IDeRS)  

Based on the discussion about transmission map 

estimation and atmospheric light estimation in 

Section 3, the IDeRS are presented in detail in 

this section.  

Raw transmission map estimation using DCP  

It cannot process RSIs efficiently since 

RSIs have a very large range of spatial 

resolution, object scale and object shape. For 

RSIs, a multi-scale model is more expected. 

Usually, the small patch size is better for high 

texture region, while the large patch size is 

better for smooth region. This phenomenon is 

also known as the ambiguity problem between 

pixel-wise and patch-wise dehazings. While, in 

the patch-wise output as shown in Fig.2 (f)-(h), 

undesirable halos near object’s edges are 

produced. More observations reveal that halos 

are mostly around the region of abrupt grayscale 

change. We name this region Transmission 

Misestimated Region (TMR) where transmission 

is misestimated by patch-wise of (7). Therefore, 

pixel-wise and patch-wise models have their 

pros and cons. A compromise between them is 

desirable for optimization. For this purpose, we 

propose a fusion model combing pixel-wise and 

patch-wise dehazing models as follows. 

Fusion of pixel-wise and patch-wise 

transmission maps  

We draw a sketch map for explaining how to 

fuse pixel-wise and patch-wise models in Fig.3. 

In Fig.3 (a), a TMR is labelled by dashed curves. 

The abrupt gray scale occurs inside the TMR, 

which causes mis-estimated transmission 

 

map using patch-wise dehazing. The fusion 

model can be given by tc(x) = Mtmr(x) · tpi(x) + 

Mtmr(x) · tpa(x), (8) where Mtmr and Mtmr 

respectively represent the weight maps for tpi 

and tpa, 0 < tc(x) < 1, Mtmr(x) + Mtmr(x) = 1, 

and Mtmr(x) ≈ 1 for x ∈ T MR, while Mtmr(x) ≈ 

0 for x < T MR. For using (8), TMR should be 

decided beforehand, which will be discussed as 

follows. 
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Revalution and analysis 

 

Image: 11.png (789x793), sigma: 25.0 

BASIC ESTIMATE, PSNR: 29.66 dB 

FINAL ESTIMATE (total time: 11.9 sec),  

PSNR: 30.34 dB 

ans =  30.3417 

 

Image: l.png (225x225), sigma: 25.0 

BASIC ESTIMATE, PSNR: 28.74 dB 

FINAL ESTIMATE (total time: 0.6 sec),  

PSNR: 29.18 dB 

ans = 29.1844 

 

Image: 33.png (787x794), sigma: 25.0 

BASIC ESTIMATE, PSNR: 34.44 dB 

FINAL ESTIMATE (total time: 10.4 sec),  

PSNR: 35.43 dB 

ans =35.4286 

Hazy images synthesized from physical haze 

model of (1) given t and A. Since the database 

does not contain heterogeneous hazy images, 

these two models are not good at dehazing 

heterogeneous hazes as illustrated in Fig.9 (g) 

and (h). Fig.10 shows the experimental results 

on suburban RSIs. This image contains 

farmlands, rivers, roads and small villages. 

Different from the high reflection of atmospheric 

light over building surface in urban region, the 

relative low reflectivity of farmland usually has 

similar color blocks at adjacent areas. As 

illustrated in Fig.10 (b), the IDeRS can obtain 

satisfied result on this kind of image while other 

methods are not quite compelling. The dehazed 

image by GDCP [15] shown in Fig.10 (c) has 

quite low contrast which cannot clearly identify 

the farmland blocks. Although the result of 

BCCR [28] and CAP [49] have more contrast 

than GDCP [15], their atmospheric lights are 

misestimated, and look quit dim. Both NLD [3] 

and DHNet [6] show over-enhanced, where 

there exist absolute black pixels (labelled 

CONCLUSIONS 

In this paper, we have proposed a 

texture-preserving nonlocal denoising algorithm 

ACVA. In ACVA, an adaptive clustering 

method is designed to adaptively and robustly 

cluster similar patches. A state-of-the-art PCA-

based denoising filter is proposed in a transform-

domain texture variation adaptive filtering 

approach to perform a texture-preserving 

denoising of each cluster. The denoising 

performance of ACVA is further improved via a 

sliding window and aggregation approach. When 

compared with the existing PG techniques 

(especially the adaptive clustering method in 

AC-PT), the proposed adaptive clustering 

method achieves more robust performance at the 

high noise level. In this paper, an iterative 

dehazing method for single RSI (IDeRS) is 

proposed. Firstly, we examine feasibilities of 

general haze optical models and dehazing 

algorithms for the RSID. Regarding optical 

model, the RSID is different from the NID in 

that it has almost constant depth, and without 

haze-opaque pixel. These two differences would 

lead to the failures of transmission map 

estimation and atmospheric light estimation, 
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respectively. To address the first problem, a term 

of “virtual depth” is defined for measuring 

covering and contaminant of the earth’s surface, 

which works as the real depth of a natural image. 

The second problem is solved by referring to the 

haze-line prior [4] without the help of haze-

opaque pixel. Secondly, to overcome over-

saturation and halo caused by pixel-wise and 

patch-wise dehazings respectively, a fusion 

model is proposed for combining pixel-wise and 

patch-wise transmission map estimations. 

Thirdly, an iterative procedure is developed to 

implement transmission map estimation and 

whole process of dehazing. Last, evaluations on 

a wide variety of RSIs downloaded from NASA 

Earth Observatory website and five well-known 

databases, prove that the proposed IDeRS can 

better recover high quality images by gradually 

removing halo artifact during iterative process, 

at the same time, suppressing over-saturation. 
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