ISSN (Online) : 2456 - 0774

Email :

ISSN (Online) 2456 - 0774

EfficientAlgorithms for Mining Erasable Closed Patterns from Product Datasets


Abstract Discoveringinformation from expansive informational collections to use in intelligentsystems turns out to be increasingly essential in the Internet period. Patternmining, classification, text mining, and opinion mining are the topical issues.Among them, pattern mining is a important issue. The issue of mining erasablepatterns (EPs) has been proposed as a variation of frequent pattern mining foroptimizing the generation plan of production factories. A few algorithms havebeen proposed for effectively mining EPs. Be that as it may, for extensivelimit esteems, many EPs are acquired, prompting substantial memory use. In thismanner, it is important to mine a consolidated portrayal of EPs. This paperfirst defines erasable closed patterns (ECPs), which can represent to the setof EPs without data loss. At that point, a theorem for quick deciding ECPs inview of dPidset structure is proposed and demonstrated. Next, two efficientalgorithms [erasable closed patterns mining (ECPat) and dNC_Set based algorithmfor erasable closed patterns mining (dNC-ECPM)] for mining ECPs in view of thistheorem are proposed.

Keywords-Data mining, pattern mining, erasablepattern, erasable closed pattern.

Full Text PDF


Submit paper at

Paper Submission Open For June 2023
UGC indexed in (Old UGC) 2017
Last date for paper submission 30th June, 2023
Deadline Submit Paper any time
Publication of Paper Within 01-02 Days after completing all the formalities
Paper Submission Open For Publication /online Conference 
Publication Fees  
Free for PR Students